Suppr超能文献

基于深度学习框架与卷积神经网络耦合的桥梁裂缝检测效率研究

Research on the Efficiency of Bridge Crack Detection by Coupling Deep Learning Frameworks with Convolutional Neural Networks.

作者信息

Ma Kaifeng, Meng Xiang, Hao Mengshu, Huang Guiping, Hu Qingfeng, He Peipei

机构信息

College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China.

出版信息

Sensors (Basel). 2023 Aug 19;23(16):7272. doi: 10.3390/s23167272.

Abstract

Bridge crack detection based on deep learning is a research area of great interest and difficulty in the field of bridge health detection. This study aimed to investigate the effectiveness of coupling a deep learning framework (DLF) with a convolutional neural network (CNN) for bridge crack detection. A dataset consisting of 2068 bridge crack images was randomly split into training, verification, and testing sets with a ratio of 8:1:1, respectively. Several CNN models, including Faster R-CNN, Single Shot MultiBox Detector (SSD), You Only Look Once (YOLO)-v5(x), U-Net, and Pyramid Scene Parsing Network (PSPNet), were used to conduct experiments using the PyTorch, TensorFlow2, and Keras frameworks. The experimental results show that the Harmonic Mean (F1) values of the detection results of the Faster R-CNN and SSD models under the Keras framework are relatively large (0.76 and 0.67, respectively, in the object detection model). The YOLO-v5(x) model of the TensorFlow2 framework achieved the highest F1 value of 0.67. In semantic segmentation models, the U-Net model achieved the highest detection result accuracy (AC) value of 98.37% under the PyTorch framework. The PSPNet model achieved the highest AC value of 97.86% under the TensorFlow2 framework. These experimental results provide optimal coupling efficiency parameters of a DLF and CNN for bridge crack detection. A more accurate and efficient DLF and CNN model for bridge crack detection has been obtained, which has significant practical application value.

摘要

基于深度学习的桥梁裂缝检测是桥梁健康检测领域中一个备受关注且极具难度的研究方向。本研究旨在探究将深度学习框架(DLF)与卷积神经网络(CNN)相结合用于桥梁裂缝检测的有效性。一个由2068张桥梁裂缝图像组成的数据集被随机划分为训练集、验证集和测试集,划分比例分别为8:1:1。使用了几种CNN模型,包括Faster R-CNN、单阶段多框检测器(SSD)、你只看一次(YOLO)-v5(x)、U-Net和金字塔场景解析网络(PSPNet),通过PyTorch、TensorFlow2和Keras框架进行实验。实验结果表明,在Keras框架下,Faster R-CNN和SSD模型检测结果的调和均值(F1)值相对较大(在目标检测模型中分别为0.76和0.67)。TensorFlow2框架的YOLO-v5(x)模型获得了最高的F1值0.67。在语义分割模型中,U-Net模型在PyTorch框架下实现了最高的检测结果准确率(AC)值98.37%。PSPNet模型在TensorFlow2框架下实现了最高的AC值97.86%。这些实验结果为桥梁裂缝检测提供了DLF与CNN的最优耦合效率参数。获得了一种用于桥梁裂缝检测的更准确、高效的DLF和CNN模型,具有显著的实际应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a1c/10459108/28e1c603e329/sensors-23-07272-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验