Suppr超能文献

人工智能模型大大提高了基于可见光皮肤图像和皮肤特征因素的角质层水分含量预测能力。

Artificial intelligence model substantially improves stratum corneum moisture content prediction from visible-light skin images and skin feature factors.

机构信息

Department of Information and Communications Engineering,Biomedical AI Research Unit, Tokyo Institute of Technology, Tokyo, Japan.

Shishido & Associates, Tokyo, Japan.

出版信息

Skin Res Technol. 2023 Aug;29(8):e13414. doi: 10.1111/srt.13414.

Abstract

BACKGROUND

Appropriate skin treatment and care warrants an accurate prediction of skin moisture. However, current diagnostic tools are costly and time-consuming. Stratum corneum moisture content has been measured with moisture content meters or from a near-infrared image.

OBJECTIVE

Here, we establish an artificial intelligence (AI) alternative for conventional skin moisture content measurements.

METHODS

Skin feature factors positively or negatively correlated with the skin moisture content were created and selected by using the PolynomialFeatures(3) of scikit-learn. Then, an integrated AI model using, as inputs, a visible-light skin image and the skin feature factors were trained with 914 skin images, the corresponding skin feature factors, and the corresponding skin moisture contents.

RESULTS

A regression-type AI model using only a visible-light skin-containing image was insufficiently implemented. To improve the accuracy of the prediction of skin moisture content, we searched for new features through feature engineering ("creation of new factors") correlated with the moisture content from various combinations of the existing skin features, and have found that factors created by combining the brown spot count, the pore count, and/or the visually assessed skin roughness give significant correlation coefficients. Then, an integrated AI deep-learning model using a visible-light skin image and these factors resulted in significantly improved skin moisture content prediction.

CONCLUSION

Skin moisture content interacts with the brown spot count, the pore count, and/or the visually assessed skin roughness so that better inference of stratum corneum moisture content can be provided using a common visible-light skin photo image and skin feature factors.

摘要

背景

适当的皮肤护理和保养需要准确预测皮肤水分。然而,目前的诊断工具既昂贵又耗时。角质层水分含量已通过水分计或近红外图像进行测量。

目的

本文旨在建立一种替代传统皮肤水分含量测量的人工智能(AI)方法。

方法

使用 scikit-learn 的 PolynomialFeatures(3) 创建和选择与皮肤水分含量呈正相关或负相关的皮肤特征因素。然后,使用 914 张皮肤图像、相应的皮肤特征因素和相应的皮肤水分含量,对一个集成的 AI 模型进行训练,该模型的输入为可见光皮肤图像和皮肤特征因素。

结果

仅使用包含可见光皮肤的图像的回归型 AI 模型实现效果不佳。为了提高皮肤水分含量预测的准确性,我们通过特征工程(“创建新因素”)从现有皮肤特征的各种组合中搜索与水分含量相关的新特征,发现将褐斑计数、毛孔计数和/或视觉评估的皮肤粗糙度组合创建的因素具有显著的相关系数。然后,使用可见光皮肤图像和这些因素的集成 AI 深度学习模型可以显著提高皮肤水分含量预测的准确性。

结论

皮肤水分含量与褐斑计数、毛孔计数和/或视觉评估的皮肤粗糙度相互作用,因此使用常见的可见光皮肤照片图像和皮肤特征因素可以更好地推断角质层水分含量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/469a/10363786/debb0b8cc1dc/SRT-29-e13414-g004.jpg

相似文献

6
A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.
J Mech Behav Biomed Mater. 2015 Sep;49:197-219. doi: 10.1016/j.jmbbm.2015.05.010. Epub 2015 May 19.
7
Artificial intelligence image recognition of melanoma and basal cell carcinoma in racially diverse populations.
J Dermatolog Treat. 2022 Jun;33(4):2257-2262. doi: 10.1080/09546634.2021.1944970. Epub 2021 Jun 30.
9
A Clinical Perspective on the Automated Analysis of Reflectance Confocal Microscopy in Dermatology.
Lasers Surg Med. 2021 Oct;53(8):1011-1019. doi: 10.1002/lsm.23376. Epub 2021 Jan 21.

引用本文的文献

1
Transforming Aesthetic Dermatology: The Role of Artificial Intelligence in Skin Health.
Dermatol Ther (Heidelb). 2025 Jun 22. doi: 10.1007/s13555-025-01459-2.
2
Artificial Intelligence in the Evolution of Customized Skincare Regimens.
Cureus. 2025 Apr 18;17(4):e82510. doi: 10.7759/cureus.82510. eCollection 2025 Apr.

本文引用的文献

2
Artificial intelligence and machine learning for medical imaging: A technology review.
Phys Med. 2021 Mar;83:242-256. doi: 10.1016/j.ejmp.2021.04.016. Epub 2021 May 9.
3
Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data.
MethodsX. 2020 Mar 19;7:100864. doi: 10.1016/j.mex.2020.100864. eCollection 2020.
6
Depth profiling of Stratum corneum hydration in vivo: a comparison between conductance and confocal Raman spectroscopic measurements.
Exp Dermatol. 2009 Oct;18(10):870-6. doi: 10.1111/j.1600-0625.2009.00868.x. Epub 2009 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验