Suppr超能文献

利用生物工程化的人体组织建模和对抗宇宙辐射的影响。

Modeling and countering the effects of cosmic radiation using bioengineered human tissues.

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA.

Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.

出版信息

Biomaterials. 2023 Oct;301:122267. doi: 10.1016/j.biomaterials.2023.122267. Epub 2023 Aug 11.

Abstract

Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.

摘要

宇宙辐射是在计划中的月球和火星任务中最严重的风险。为了开发延长太空旅行期间的辐射防护措施,迫切需要了解人类组织中辐射损伤的影响、安全阈值和机制。由于动物模型未能重现宇航员的分子变化,因此工程化的人体组织和“芯片上器官”是体外研究辐射影响的有价值工具。我们已经开发了一种用于研究个体化设置中辐射损伤的生物工程组织平台。为了证明其效用,我们使用两种已知对辐射敏感的工程化人体组织模型(工程化心脏组织(eCT,慢性辐射损伤的靶标)和工程化骨髓(eBM,急性辐射损伤的靶标))确定了辐射的影响。我们报告了高剂量中子(模拟银河宇宙射线的替代物)对涉及组织对电离辐射反应的关键基因表达、两种组织的表型和功能变化的影响,以及放射防护剂的原理验证应用。我们进一步确定了炎症、氧化应激和基质重塑基因表达变化的程度,并发现这些变化与 eCT 中的早期肥大表型和 eBM 中的骨髓细胞向髓系分化有关。我们提出,个体化的人体组织模型有可能深入了解深空任务期间辐射的影响和机制,并允许测试放射防护措施。

相似文献

1
Modeling and countering the effects of cosmic radiation using bioengineered human tissues.
Biomaterials. 2023 Oct;301:122267. doi: 10.1016/j.biomaterials.2023.122267. Epub 2023 Aug 11.
2
Modeling the Effects of Protracted Cosmic Radiation in a Human Organ-on-Chip Platform.
Adv Sci (Weinh). 2024 Nov;11(42):e2401415. doi: 10.1002/advs.202401415. Epub 2024 Jul 4.
3
Getting ready for the manned mission to Mars: the astronauts' risk from space radiation.
Naturwissenschaften. 2007 Jul;94(7):517-26. doi: 10.1007/s00114-006-0204-0. Epub 2007 Jan 19.
4
Radioprotective effects of induced astronaut torpor and advanced propulsion systems during deep space travel.
Life Sci Space Res (Amst). 2020 Aug;26:105-113. doi: 10.1016/j.lssr.2020.05.005. Epub 2020 Jun 10.
5
Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships.
Front Public Health. 2021 Nov 8;9:733337. doi: 10.3389/fpubh.2021.733337. eCollection 2021.
6
Non-targeted effects and space radiation risks for astronauts on multiple International Space Station and lunar missions.
Life Sci Space Res (Amst). 2024 Feb;40:166-175. doi: 10.1016/j.lssr.2023.08.003. Epub 2023 Aug 23.
7
Health care for deep space explorers.
Ann ICRP. 2020 Dec;49(1_suppl):182-184. doi: 10.1177/0146645320935288. Epub 2020 Jul 31.
8
Tissue-specific dose equivalents of secondary mesons and leptons during galactic cosmic ray exposures for mars exploration.
Life Sci Space Res (Amst). 2024 May;41:29-42. doi: 10.1016/j.lssr.2024.01.003. Epub 2024 Jan 24.
9
Thick shielding against galactic cosmic radiation: A Monte Carlo study with focus on the role of secondary neutrons.
Life Sci Space Res (Amst). 2022 May;33:58-68. doi: 10.1016/j.lssr.2022.03.003. Epub 2022 Apr 9.
10
Calculation of dose distribution in a realistic brain structure and the indication of space radiation influence on human brains.
Life Sci Space Res (Amst). 2020 Nov;27:33-48. doi: 10.1016/j.lssr.2020.07.003. Epub 2020 Jul 15.

引用本文的文献

1
Squidiff: Predicting cellular development and responses to perturbations using a diffusion model.
bioRxiv. 2025 Aug 26:2024.11.16.623974. doi: 10.1101/2024.11.16.623974.
2
Development of Nanocarrier-Based Oral Pegfilgrastim Formulations for Mitigating Hematopoietic Acute Radiation Syndrome.
Adv Funct Mater. 2025 Jun 19;35(25). doi: 10.1002/adfm.202421462. Epub 2025 Feb 5.
6
Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research.
Biotechnol Adv. 2025 Jul-Aug;81:108574. doi: 10.1016/j.biotechadv.2025.108574. Epub 2025 Apr 1.
7
An engineered model of metastatic colonization of human bone marrow reveals breast cancer cell remodeling of the hematopoietic niche.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2405257121. doi: 10.1073/pnas.2405257121. Epub 2024 Oct 7.
8
Consequences of ionizing radiation exposure to the cardiovascular system.
Nat Rev Cardiol. 2024 Dec;21(12):880-898. doi: 10.1038/s41569-024-01056-4. Epub 2024 Jul 10.
9
Modeling the Effects of Protracted Cosmic Radiation in a Human Organ-on-Chip Platform.
Adv Sci (Weinh). 2024 Nov;11(42):e2401415. doi: 10.1002/advs.202401415. Epub 2024 Jul 4.
10
Macrophages enhance contractile force in iPSC-derived human engineered cardiac tissue.
Cell Rep. 2024 Jun 25;43(6):114302. doi: 10.1016/j.celrep.2024.114302. Epub 2024 May 31.

本文引用的文献

1
Astrocytes regulate vascular endothelial responses to simulated deep space radiation in a human organ-on-a-chip model.
Front Immunol. 2022 Aug 30;13:864923. doi: 10.3389/fimmu.2022.864923. eCollection 2022.
2
A multi-organ chip with matured tissue niches linked by vascular flow.
Nat Biomed Eng. 2022 Apr;6(4):351-371. doi: 10.1038/s41551-022-00882-6. Epub 2022 Apr 27.
3
Human organs-on-chips for disease modelling, drug development and personalized medicine.
Nat Rev Genet. 2022 Aug;23(8):467-491. doi: 10.1038/s41576-022-00466-9. Epub 2022 Mar 25.
4
From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing.
Prog Mol Biol Transl Sci. 2022;187(1):41-91. doi: 10.1016/bs.pmbts.2021.07.019. Epub 2021 Aug 6.
5
Organ-on-a-chip model of vascularized human bone marrow niches.
Biomaterials. 2022 Jan;280:121245. doi: 10.1016/j.biomaterials.2021.121245. Epub 2021 Nov 12.
6
milliPillar: A Platform for the Generation and Real-Time Assessment of Human Engineered Cardiac Tissues.
ACS Biomater Sci Eng. 2021 Nov 8;7(11):5215-5229. doi: 10.1021/acsbiomaterials.1c01006. Epub 2021 Oct 20.
7
Cytogenetic Damage of Human Lymphocytes in Humanized Mice Exposed to Neutrons and X Rays 24 h After Exposure.
Cytogenet Genome Res. 2021;161(6-7):352-361. doi: 10.1159/000516529. Epub 2021 Sep 6.
8
Radiation-Induced Cardiovascular Disease: Review of an Underrecognized Pathology.
J Am Heart Assoc. 2021 Sep 21;10(18):e021686. doi: 10.1161/JAHA.121.021686. Epub 2021 Sep 6.
9
Organs-on-a-chip models for biological research.
Cell. 2021 Sep 2;184(18):4597-4611. doi: 10.1016/j.cell.2021.08.005.
10
Harnessing organs-on-a-chip to model tissue regeneration.
Cell Stem Cell. 2021 Jun 3;28(6):993-1015. doi: 10.1016/j.stem.2021.05.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验