Suppr超能文献

揭示 KRas4b 在膜表面的拓扑结构。

Revealing KRas4b topology on the membrane surface.

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, United States.

出版信息

Biochem Biophys Res Commun. 2023 Oct 20;678:122-127. doi: 10.1016/j.bbrc.2023.08.035. Epub 2023 Aug 21.

Abstract

KRas4b is a membrane-bound regulatory protein belonging to the family of small GTPases that function as a molecular switch, facilitating signal transduction from activated membrane receptors to intracellular pathways controlling cell growth and proliferation. Oncogenic mutations locking KRas4b in the active GTP state are responsible for nearly 85% of all Ras-driven cancers. Understanding the membrane-bound state of KRas4b is crucial for designing new therapeutic approaches targeting oncogenic KRas-driven signaling pathways. Extensive research demonstrates the significant involvement of the membrane bilayer in Ras-effector interactions, with anionic lipids playing a critical role in determining protein conformations The preferred topology of KRas4b for interacting with signaling partners has been a long-time question. Computational studies suggest a membrane-proximal conformation, while other biophysical methods like neutron reflectivity propose a membrane-distal conformation. To address these gaps, we employed FRET measurements to investigate the conformation of KRas4b. Using fully post-translationally modified KRas4b, we designed a Nanodisc based FRET assay to study KRas4b-membrane interactions. We suggest an extended conformation of KRas4b relative to the membrane surface. Measurement of FRET donor - acceptor distances reveal that a negatively charged membrane surface weakly favors closer association with the membrane surface. Our findings provide insights into the role of anionic lipids in determining the dynamic conformations of KRas4b and shed light on the predominant conformation of its topology on lipid headgroups.

摘要

KRas4b 是一种膜结合的调节蛋白,属于小 GTP 酶家族,作为分子开关,促进从激活的膜受体到控制细胞生长和增殖的细胞内途径的信号转导。将 KRas4b 锁定在活性 GTP 状态的致癌突变负责近 85%的所有 Ras 驱动的癌症。了解 KRas4b 的膜结合状态对于设计针对致癌 KRas 驱动的信号通路的新治疗方法至关重要。广泛的研究表明,膜双层在 Ras-效应物相互作用中起着重要作用,阴离子脂质在确定蛋白质构象方面起着关键作用。KRas4b 与信号伙伴相互作用的首选拓扑结构一直是一个长期存在的问题。计算研究表明存在一种膜近端构象,而其他生物物理方法如中子反射率则提出了一种膜远端构象。为了解决这些差距,我们使用 FRET 测量来研究 KRas4b 的构象。使用完全翻译后修饰的 KRas4b,我们设计了基于 Nanodisc 的 FRET 测定法来研究 KRas4b-膜相互作用。我们提出了 KRas4b 相对于膜表面的扩展构象。FRET 供体-受体距离的测量表明,带负电荷的膜表面微弱地有利于与膜表面更紧密的结合。我们的发现提供了关于阴离子脂质在确定 KRas4b 动态构象中的作用的见解,并阐明了其在脂质头基上拓扑结构的主要构象。

相似文献

1
Revealing KRas4b topology on the membrane surface.
Biochem Biophys Res Commun. 2023 Oct 20;678:122-127. doi: 10.1016/j.bbrc.2023.08.035. Epub 2023 Aug 21.
2
KRas4b-Calmodulin Interaction with Membrane Surfaces: Role of Headgroup, Acyl Chain, and Electrostatics.
Biochemistry. 2024 Nov 5;63(21):2740-2749. doi: 10.1021/acs.biochem.4c00116. Epub 2024 Oct 9.
3
PIP2 Influences the Conformational Dynamics of Membrane-Bound KRAS4b.
Biochemistry. 2019 Aug 20;58(33):3537-3545. doi: 10.1021/acs.biochem.9b00395. Epub 2019 Aug 1.
4
Interaction of KRas4b with anionic membranes: A special role for PIP.
Biochem Biophys Res Commun. 2017 May 27;487(2):351-355. doi: 10.1016/j.bbrc.2017.04.063. Epub 2017 Apr 13.
5
The quaternary assembly of KRas4B with Raf-1 at the membrane.
Comput Struct Biotechnol J. 2020 Mar 25;18:737-748. doi: 10.1016/j.csbj.2020.03.018. eCollection 2020.
7
Unveiling the Dynamics of KRAS4b on Lipid Model Membranes.
J Membr Biol. 2021 Apr;254(2):201-216. doi: 10.1007/s00232-021-00176-z. Epub 2021 Apr 7.
8
How Anionic Lipids Affect Spatiotemporal Properties of KRAS4B on Model Membranes.
J Phys Chem B. 2020 Jul 2;124(26):5434-5453. doi: 10.1021/acs.jpcb.0c02642. Epub 2020 Jun 8.
9
design of a lipid-like compound targeting KRAS4B-G12D through non-covalent bonds.
Nanoscale. 2023 Dec 7;15(47):19359-19368. doi: 10.1039/d3nr04513g.
10
The Self-Association of the KRAS4b Protein is Altered by Lipid-Bilayer Composition and Electrostatics.
Angew Chem Int Ed Engl. 2023 Apr 24;62(18):e202218698. doi: 10.1002/anie.202218698. Epub 2023 Mar 27.

引用本文的文献

1
KRas4b-Calmodulin Interaction with Membrane Surfaces: Role of Headgroup, Acyl Chain, and Electrostatics.
Biochemistry. 2024 Nov 5;63(21):2740-2749. doi: 10.1021/acs.biochem.4c00116. Epub 2024 Oct 9.
2
Nanodiscs for the study of membrane proteins.
Curr Opin Struct Biol. 2024 Aug;87:102844. doi: 10.1016/j.sbi.2024.102844. Epub 2024 May 24.

本文引用的文献

1
Quantitative Paramagnetic NMR-Based Analysis of Protein Orientational Dynamics on Membranes: Dissecting the KRas4B-Membrane Interactions.
J Am Chem Soc. 2023 May 10;145(18):10295-10303. doi: 10.1021/jacs.3c01597. Epub 2023 Apr 28.
2
The Self-Association of the KRAS4b Protein is Altered by Lipid-Bilayer Composition and Electrostatics.
Angew Chem Int Ed Engl. 2023 Apr 24;62(18):e202218698. doi: 10.1002/anie.202218698. Epub 2023 Mar 27.
4
Millisecond molecular dynamics simulations of KRas-dimer formation and interfaces.
Biophys J. 2022 Oct 4;121(19):3730-3744. doi: 10.1016/j.bpj.2022.04.026. Epub 2022 Apr 23.
5
A brief history of RAS and the RAS Initiative.
Adv Cancer Res. 2022;153:1-27. doi: 10.1016/bs.acr.2021.07.003. Epub 2021 Sep 14.
6
Past and Future Strategies to Inhibit Membrane Localization of the KRAS Oncogene.
Int J Mol Sci. 2021 Dec 7;22(24):13193. doi: 10.3390/ijms222413193.
7
KRAS mutation: from undruggable to druggable in cancer.
Signal Transduct Target Ther. 2021 Nov 15;6(1):386. doi: 10.1038/s41392-021-00780-4.
8
K-RAS4A: Lead or Supporting Role in Cancer Biology?
Front Mol Biosci. 2021 Sep 15;8:729830. doi: 10.3389/fmolb.2021.729830. eCollection 2021.
9
RAS Nanoclusters Selectively Sort Distinct Lipid Headgroups and Acyl Chains.
Front Mol Biosci. 2021 Jun 17;8:686338. doi: 10.3389/fmolb.2021.686338. eCollection 2021.
10
Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24258-24268. doi: 10.1073/pnas.2006504117. Epub 2020 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验