Advanced Computing for Life Sciences and Engineering Group, Science Engagement Section, National Center for Computational Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee; Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico.
Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, New Mexico.
Biophys J. 2022 Oct 4;121(19):3730-3744. doi: 10.1016/j.bpj.2022.04.026. Epub 2022 Apr 23.
Ras dimers have been proposed as building blocks for initiating the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cellular signaling pathway. To better examine the structure of possible dimer interfaces, the dynamics of Ras dimerization, and its potential signaling consequences, we performed molecular dynamics simulations totaling 1 ms of sampling, using an all-atom model of two full-length, farnesylated, guanosine triphosphate (GTP)-bound, wild-type KRas4b proteins diffusing on 29%POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine)-mixed POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Our simulations unveil an ensemble of thermodynamically weak KRas dimers spanning multiple conformations. The most stable conformations, having the largest interface areas, involve helix α and a hypervariable region (HVR). Among the dimer conformations, we found that the HVR of each KRas has frequent interactions with various parts of the dimer, thus potentially mediating the dimerization. Some dimer configurations have one KRas G-domain elevated above the lipid bilayer surface by residing on top of the other G-domain, thus likely contributing to the recruitment of cytosolic Raf kinases in the context of a stably formed multi-protein complex. We identified a variant of the α-α KRas-dimer interface that is similar to the interfaces obtained with fluorescence resonance energy transfer (FRET) data of HRas on lipid bilayers. Interestingly, we found two arginine fingers, R68 and R149, that directly interact with the beta-phosphate of the GTP bound in KRas, in a manner similar to what is observed in a crystal structure of GAP-HRas complex, which can facilitate the GTP hydrolysis via the arginine finger of GTPase-activating protein (GAP).
Ras 二聚体被认为是启动细胞外信号调节激酶 (ERK)/丝裂原活化蛋白激酶 (MAPK) 细胞信号通路的结构基础。为了更好地研究可能的二聚体界面结构、Ras 二聚化的动力学及其潜在的信号转导后果,我们使用全长、法呢基化、鸟苷三磷酸 (GTP) 结合、野生型 KRas4b 蛋白的全原子模型进行了总计 1 毫秒的采样分子动力学模拟,这些蛋白在 29%POPs(1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸-L-丝氨酸)混合 POPC(1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱)膜上扩散。我们的模拟揭示了一组跨越多种构象的热力学上较弱的 KRas 二聚体。最稳定的构象具有最大的界面面积,涉及α螺旋和高变区(HVR)。在二聚体构象中,我们发现每个 KRas 的 HVR 与二聚体的各个部分频繁相互作用,从而可能介导二聚化。一些二聚体构型中,一个 KRas 的 G 结构域位于另一个 G 结构域之上,高出脂质双层表面,因此可能有助于在稳定形成的多蛋白复合物的情况下募集胞质 Raf 激酶。我们确定了一种α-α KRas 二聚体界面的变体,该变体与 HRas 在脂质双层上的荧光共振能量转移 (FRET) 数据获得的界面相似。有趣的是,我们发现两个精氨酸指,R68 和 R149,直接与结合在 KRas 中的 GTP 的β-磷酸相互作用,其方式类似于 GAP-HRas 复合物晶体结构中观察到的方式,这可以通过 GTP 酶激活蛋白 (GAP) 的精氨酸指促进 GTP 水解。