Suppr超能文献

异相结工程:增强1T/2H-MoS上CO还原的光热协同催化性能

Heterophase junction engineering: Enhanced photo-thermal synergistic catalytic performance of CO reduction over 1T/2H-MoS.

作者信息

Wang Yue, Lin Yuhan, Zha Fengjuan, Li Yingxuan

机构信息

School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.

School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.

出版信息

J Colloid Interface Sci. 2023 Dec 15;652(Pt A):936-944. doi: 10.1016/j.jcis.2023.08.127. Epub 2023 Aug 22.

Abstract

Photocatalytic CO reduction technology has been proposed as a promising solution to the greenhouse effect and energy crisis. However, the lower quantum efficiency limits its practical applications. Here, we have significantly improved the photocatalytic CO reduction performance of MoS by coupling the heterophase junction (1T/2H-MoS) construction and photo-thermal synergy strategies. At 200 °C and 42 mW·cm of 420 nm LED irradiation, the CO production rate of 1T/2H-MoS reached 35.3 μmol·g·h, which was 3.5 and 2.8 times that of 1T-MoS and 2H-MoS, respectively. In addition, only faint CO was detected under sole photo- or sole thermal catalysis conditions. Mechanism studies showed that COOH* was the key intermediate in the photo-thermal synergistic catalytic CO reduction over 1T/2H-MoS. The heterophase junction engineering significantly facilitated the separation of photogenerated carriers, and the introduction of heat accelerated the charge migration and surface reaction rates. Our work provides innovative insights into the catalyst design and mechanism studies for photo-thermal synergistic catalytic CO reduction.

摘要

光催化CO还原技术已被提出作为解决温室效应和能源危机的一种有前景的解决方案。然而,较低的量子效率限制了其实际应用。在此,我们通过耦合异质结(1T/2H-MoS)构建和光热协同策略,显著提高了MoS的光催化CO还原性能。在200°C和420nm LED照射强度为42mW·cm²的条件下,1T/2H-MoS的CO产率达到35.3μmol·g⁻¹·h,分别是1T-MoS和2H-MoS的3.5倍和2.8倍。此外,在单独光催化或单独热催化条件下仅检测到微量的CO。机理研究表明,COOH*是1T/2H-MoS光热协同催化CO还原过程中的关键中间体。异质结工程显著促进了光生载流子的分离,热的引入加速了电荷迁移和表面反应速率。我们的工作为光热协同催化CO还原的催化剂设计和机理研究提供了创新性见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验