Li Chen-Hui, Djemia Philippe, Chigarev Nikolay, Sodki Siham, Roussigné Yves, Manthilake Geeth, Tessier Franck, Raetz Samuel, Gusev Vitalyi E, Zerr Andreas
Laboratoire des Sciences des Procédés et des Matériaux, CNRS UPR 3407, Université Sorbonne Paris Nord, 93430 Villetaneuse, France.
Laboratoire d'Acoustique de l'Université du Mans, CNRS UMR 6613, Le Mans Université, 72085 Le Mans, France.
Philos Trans A Math Phys Eng Sci. 2023 Oct 16;381(2258):20230016. doi: 10.1098/rsta.2023.0016. Epub 2023 Aug 28.
Germanium nitride, having cubic spinel structure, γ-GeN, is a wide band-gap semiconductor with a large exciton binding energy that exhibits high hardness, elastic moduli and elevated thermal stability up to approximately 700°C. Experimental data on its bulk and shear moduli ( and , respectively) are strongly limited, inconsistent and, thus, require verification. Moreover, earlier first-principles density functional calculations provided significantly scattering values but consistently predicted much higher than the so far available experimental value. Here, we examined the elasticity of polycrystalline γ-GeN, densified applying high pressures and temperatures, using the techniques of laser ultrasonics (LU) and Brillouin light scattering (BLS) and compared with our extended first-principles calculations. From the LU measurements, we obtained its longitudinal- and Rayleigh wave sound velocities and, taking into account the sample porosity, derived = 322(44) GPa and = 188(7) GPa for the dense polycrystalline γ-GeN. While our calculations underestimated by approximately 17%, most of the predicted matched well with our experimental value. Combining the LU- and BLS data and taking into account the elastic anisotropy, we determined the refractive index of γ-GeN in the visible range of light to be = 2.4, similarly high as that of diamond or GaN, and matching our calculated value. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.
具有立方尖晶石结构的γ-氮化锗(Germanium nitride)是一种宽带隙半导体,具有较大的激子结合能,表现出高硬度、弹性模量以及高达约700°C的热稳定性。关于其体模量和剪切模量(分别为 和 )的实验数据非常有限、不一致,因此需要验证。此外,早期的第一性原理密度泛函计算给出的 值差异很大,但一致预测 远高于目前可用的实验值。在此,我们使用激光超声(LU)和布里渊光散射(BLS)技术研究了通过高温高压致密化的多晶γ-氮化锗的弹性,并与我们扩展的第一性原理计算进行了比较。通过LU测量,我们获得了其纵波和瑞利波声速,并考虑样品孔隙率,得出致密多晶γ-氮化锗的 = 322(44) GPa和 = 188(7) GPa。虽然我们的计算低估了 约17%,但大多数预测的 与我们的实验值匹配良好。结合LU和BLS数据并考虑弹性各向异性,我们确定γ-氮化锗在可见光范围内的折射率为 = 2.4,与金刚石或氮化镓的折射率相近,且与我们的计算值相符。本文是主题为“探索具有挑战性材料的长度尺度、时间尺度和化学性质(第1部分)”的一部分。