Suppr超能文献

鉴定 T 细胞耗竭相关基因特征,用于预测多形性胶质母细胞瘤的预后。

Identification of T-cell exhaustion-related gene signature for predicting prognosis in glioblastoma multiforme.

机构信息

Department of Neurology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China.

College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China.

出版信息

J Cell Mol Med. 2023 Nov;27(22):3503-3513. doi: 10.1111/jcmm.17927. Epub 2023 Aug 27.

Abstract

Glioblastoma multiforme (GBM) is a highly malignant primary brain tumour with a poor prognosis in adults. Identifying biomarkers that can aid in the molecular classification and risk stratification of GBM is critical. Here, we conducted a transcriptional profiling analysis of T-cell immunity in the tumour microenvironment of GBM patients and identified two novel T cell exhaustion (TEX)-related GBM subtypes (termed TEX-C1 and TEX-C2) using the consensus clustering. Our multi-omics analysis revealed distinct immunological, molecular and clinical characteristics for these two subtypes. Specifically, the TEX-C1 subtype had higher infiltration levels of immune cells and expressed higher levels of immune checkpoint molecules than the TEX-C2 subtype. Functional analysis revealed that upregulated genes in the TEX-C1 subtype were significantly enriched in immune response and signal transduction pathways, and upregulated genes in the TEX-C2 subtype were predominantly associated with cell fate and nervous system development pathways. Notably, patients with activated T-cell activity status in the TEX-C1 subgroup demonstrated a significantly worse prognosis than those with severe T cell exhaustion status in the TEX-C2 subgroup. Finally, we proposed a machine-learning-derived novel gene signature comprising 12 TEX-related genes (12TexSig) to indicate tumour subtyping. In the TCGA cohort, the 12TexSig demonstrated the ability to accurately predict the prognosis of GBM patients, and this prognostic value was further confirmed in two independent external cohorts. Taken together, our results suggest that the TEX-derived subtyping and gene signature has the potential to serve as a clinically helpful biomarker for guiding the management of GBM patients, pending further prospective validation.

摘要

多形性胶质母细胞瘤(GBM)是一种高度恶性的成人原发性脑肿瘤,预后不良。鉴定有助于 GBM 分子分类和风险分层的生物标志物至关重要。在这里,我们对 GBM 患者肿瘤微环境中的 T 细胞免疫进行了转录谱分析,并使用共识聚类鉴定了两种新的 T 细胞耗竭(TEX)相关 GBM 亚型(分别命名为 TEX-C1 和 TEX-C2)。我们的多组学分析揭示了这两种亚型具有明显不同的免疫学、分子和临床特征。具体来说,TEX-C1 亚型的免疫细胞浸润水平较高,免疫检查点分子表达水平也较高。功能分析显示,TEX-C1 亚型上调的基因在免疫反应和信号转导途径中显著富集,而 TEX-C2 亚型上调的基因主要与细胞命运和神经系统发育途径相关。值得注意的是,在 TEX-C1 亚组中具有激活 T 细胞活性状态的患者比在 TEX-C2 亚组中具有严重 T 细胞耗竭状态的患者预后明显更差。最后,我们提出了一个由 12 个 TEX 相关基因组成的机器学习衍生的新基因特征(12TexSig)来指示肿瘤亚分型。在 TCGA 队列中,12TexSig 能够准确预测 GBM 患者的预后,这一预后价值在两个独立的外部队列中得到了进一步证实。总之,我们的研究结果表明,TEX 衍生的亚分型和基因特征有可能成为指导 GBM 患者管理的有临床帮助的生物标志物,有待进一步的前瞻性验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c42/10660619/2cf336e16661/JCMM-27-3503-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验