Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA.
The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Nat Commun. 2022 Feb 9;13(1):767. doi: 10.1038/s41467-022-28372-y.
A major rate-limiting step in developing more effective immunotherapies for GBM is our inadequate understanding of the cellular complexity and the molecular heterogeneity of immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human glioma, immune, and other stromal cells at the single cell level. In doing so, we discover extensive spatial and molecular heterogeneity in immune infiltrates. We identify molecular signatures for nine distinct myeloid cell subtypes, of which five are independent prognostic indicators of glioma patient survival. Furthermore, we identify S100A4 as a regulator of immune suppressive T and myeloid cells in GBM and demonstrate that deleting S100a4 in non-cancer cells is sufficient to reprogram the immune landscape and significantly improve survival. This study provides insights into spatial, molecular, and functional heterogeneity of glioma and glioma-associated immune cells and demonstrates the utility of this dataset for discovering therapeutic targets for this poorly immunogenic cancer.
开发更有效的胶质母细胞瘤免疫疗法的主要限速步骤是我们对胶质瘤中免疫浸润物的细胞复杂性和分子异质性的了解不足。在这里,我们报告了对 201986 个人类神经胶质瘤、免疫和其他基质细胞进行单细胞水平的综合分析。通过这样做,我们发现免疫浸润物存在广泛的空间和分子异质性。我们确定了九个不同髓样细胞亚型的分子特征,其中五个是胶质母细胞瘤患者生存的独立预后指标。此外,我们还发现 S100A4 是 GBM 中免疫抑制性 T 细胞和髓样细胞的调节剂,并证明在非癌细胞中删除 S100a4 足以重新编程免疫景观并显著提高生存率。这项研究深入了解了神经胶质瘤和神经胶质瘤相关免疫细胞的空间、分子和功能异质性,并证明了该数据集对于发现这种免疫原性差的癌症的治疗靶点的实用性。