Gomez-Gonzalez Miguel A, Da Silva-Ferreira Tatiana, Clark Nathaniel, Clough Robert, Quinn Paul D, Parker Julia E
Diamond Light Source Didcot Oxfordshire OX11 0DE UK.
School of Health Professions Peninsula Allied Health Centre University of Plymouth Derriford Road Plymouth PL6 8BH UK.
Glob Chall. 2023 Jul 5;7(8):2300036. doi: 10.1002/gch2.202300036. eCollection 2023 Aug.
Over recent decades, there has been a dramatic increase in the manufacture of engineered nanomaterials, which has inevitably led to their environmental release. Zinc oxide (ZnO) is among the more abundant nanomaterial manufactured due to its advantageous properties, used for piezoelectric, semiconducting, and antibacterial purposes. Plastic waste is ubiquitous and may break down or delaminate into smaller microplastics, leaving open the question of whether these small polymers may alter the fate of ZnO through adsorption within aquatic media (tap-water and seawater). Here, scanning electron microscopy analysis confirms the effective Zn nano/microstructures adsorption onto polystyrene surfaces after only 24-h incubation in the aquatic media. After pre-aging the nanomaterials for 7-days in different environmental media, nanoprobe X-ray absorption near-edge spectroscopy analysis reveals significant ZnO transformation toward Zn-sulfide and Zn-phosphate. The interaction between a commercial ZnO-based sunscreen with polystyrene and a cleanser consumer containing microbeads with ZnO nanomaterials is also studied, revealing the adsorption of transformed Zn-species in the microplastics surfaces, highlighting the environmental relevancy of this work. Understanding the structural and functional impacts of the microplastics/ZnO complexes, and how they evolve, will provide insights into their chemical nature, stability, transformations, and fate, which is key to predicting their bioreactivity in the environment.
在最近几十年里,工程纳米材料的制造量急剧增加,这不可避免地导致它们释放到环境中。氧化锌(ZnO)因其具有压电、半导体和抗菌等优势特性,是产量较高的纳米材料之一。塑料垃圾无处不在,可能会分解或分层成更小的微塑料,这就引发了一个问题:这些小聚合物是否会通过在水生介质(自来水和海水)中的吸附作用改变氧化锌的归宿。在这里,扫描电子显微镜分析证实,在水生介质中仅孵育24小时后,锌纳米/微观结构就能有效吸附到聚苯乙烯表面。在不同环境介质中将纳米材料预老化7天后,纳米探针X射线吸收近边光谱分析显示氧化锌向硫化锌和磷酸锌发生了显著转变。还研究了一种基于氧化锌的商用防晒霜与聚苯乙烯之间的相互作用,以及一种含有氧化锌纳米材料微珠的清洁消费品,结果显示转化后的锌物种吸附在微塑料表面,突出了这项工作与环境的相关性。了解微塑料/氧化锌复合物的结构和功能影响以及它们如何演变,将有助于深入了解其化学性质、稳定性、转化过程和归宿,这对于预测它们在环境中的生物反应性至关重要。