Weinreb Violetta, Weinreb Gabriel, Carter Charles W
Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA.
Struct Dyn. 2023 Aug 23;10(4):044304. doi: 10.1063/4.0000182. eCollection 2023 Jul.
Landscape descriptions provide a framework for identifying functionally significant dynamic linkages in proteins but cannot supply details. Rate measurements of combinatorial mutations can implicate dynamic linkages in catalysis. A major difficulty is filtering dynamic linkages from the vastly more numerous static interactions that stabilize domain folding. The (TrpRS) D1 switch is such a dynamic packing motif; it links domain movement to catalysis and specificity. We describe Thermofluor and far UV circular dichroism melting curves for all 16 D1 switch variants to determine their higher-order impact on unliganded TrpRS stability. A prominent transition at intermediate temperatures in TrpRS thermal denaturation is molten globule formation. Combinatorial analysis of thermal melting transcends the protein landscape in four significant respects: (i) bioinformatic methods identify dynamic linkages from coordinates of multiple conformational states. (ii) Relative mutant melting temperatures, δT, are proportional to free energy changes. (iii) Structural analysis of thermal melting implicates unexpected coupling between the D1 switch packing and regions of high local frustration. Those segments develop molten globular characteristics at the point of greatest complementarity to the chemical transition state and are the first TrpRS structures to melt. (iv) Residue F37 stabilizes both native and molten globular states; its higher-order interactions modify the relative intrinsic impacts of mutations to other D1 switch residues from those estimated for single point mutants. The D1 switch is a central component of an escapement mechanism essential to free energy transduction. These conclusions begin to relate the escapement mechanism to differential TrpRS conformational stabilities.
景观描述为识别蛋白质中功能上重要的动态联系提供了一个框架,但无法提供细节。组合突变的速率测量可以揭示催化过程中的动态联系。一个主要困难是从大量稳定结构域折叠的静态相互作用中筛选出动态联系。色氨酰-tRNA合成酶(TrpRS)的D1开关就是这样一种动态堆积基序;它将结构域运动与催化和特异性联系起来。我们描述了所有16种D1开关变体的热荧光和远紫外圆二色性熔解曲线,以确定它们对未结合TrpRS稳定性的高阶影响。TrpRS热变性过程中在中间温度出现的一个显著转变是熔球态的形成。热熔解的组合分析在四个重要方面超越了蛋白质景观:(i)生物信息学方法从多个构象状态的坐标中识别动态联系。(ii)相对突变体熔解温度δT与自由能变化成正比。(iii)热熔解的结构分析表明D1开关堆积与高度局部受挫区域之间存在意外的耦合。这些片段在与化学过渡态最大互补的点处呈现熔球态特征,并且是最早熔解的TrpRS结构。(iv)残基F37稳定天然态和熔球态;其高阶相互作用改变了对其他D1开关残基突变的相对内在影响,与单点突变体估计的影响不同。D1开关是自由能转导必不可少的擒纵机制的核心组成部分。这些结论开始将擒纵机制与TrpRS不同的构象稳定性联系起来。