Suppr超能文献

与 urzyme 相比,完全进化的色氨酰-tRNA 合成酶中增强的氨基酸选择需要 D1 开关感知的结构域运动,这是一个远程动态包装模体。

Enhanced amino acid selection in fully evolved tryptophanyl-tRNA synthetase, relative to its urzyme, requires domain motion sensed by the D1 switch, a remote dynamic packing motif.

机构信息

From the Department of Biochemistry and Biophysics, CB 7260, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260.

出版信息

J Biol Chem. 2014 Feb 14;289(7):4367-76. doi: 10.1074/jbc.M113.538660. Epub 2014 Jan 6.

Abstract

We previously showed (Li, L., and Carter, C. W., Jr. (2013) J. Biol. Chem. 288, 34736-34745) that increased specificity for tryptophan versus tyrosine by contemporary Bacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS) over that of TrpRS Urzyme results entirely from coupling between the anticodon-binding domain and an insertion into the Rossmann-fold known as Connecting Peptide 1. We show that this effect is closely related to a long range catalytic effect, in which side chain repacking in a region called the D1 Switch, accounts fully for the entire catalytic contribution of the catalytic Mg(2+) ion. We report intrinsic and higher order interaction effects on the specificity ratio, (kcat/Km)Trp/(kcat/Km)Tyr, of 15 combinatorial mutants from a previous study (Weinreb, V., Li, L., and Carter, C. W., Jr. (2012) Structure 20, 128-138) of the catalytic role of the D1 Switch. Unexpectedly, the same four-way interaction both activates catalytic assist by Mg(2+) ion and contributes -4.4 kcal/mol to the free energy of the specificity ratio. A minimum action path computed for the induced-fit and catalytic conformation changes shows that repacking of the four residues precedes a decrease in the volume of the tryptophan-binding pocket. We suggest that previous efforts to alter amino acid specificities of TrpRS and glutaminyl-tRNA synthetase (GlnRS) by mutagenesis without extensive, modular substitution failed because mutations were incompatible with interdomain motions required for catalysis.

摘要

我们之前表明(Li, L., and Carter, C. W., Jr. (2013) J. Biol. Chem. 288, 34736-34745),与 Urzyme 相比,当代地衣芽孢杆菌色氨酰-tRNA 合成酶(TrpRS)对色氨酸与酪氨酸的特异性增加完全是由于反密码子结合结构域与插入到称为连接肽 1 的 Rossmann 折叠的连接。我们表明,这种效应与长程催化效应密切相关,其中称为 D1 开关的区域中的侧链重新组装完全解释了催化 Mg(2+)离子的整个催化贡献。我们报告了来自先前研究(Weinreb, V., Li, L., and Carter, C. W., Jr. (2012) Structure 20, 128-138)的 15 种组合突变体对特异性比(kcat/Km)Trp/(kcat/Km)Tyr 的固有和高阶相互作用效应,该研究研究了 D1 开关的催化作用。出乎意料的是,相同的四向相互作用既激活了 Mg(2+)离子的催化辅助作用,又为特异性比的自由能贡献了-4.4 kcal/mol。为诱导契合和催化构象变化计算的最小作用路径表明,四个残基的重新组装先于色氨酸结合口袋体积的减小。我们认为,以前通过诱变改变 TrpRS 和谷氨酰胺-tRNA 合成酶(GlnRS)的氨基酸特异性的努力没有广泛的模块取代而失败,因为突变与催化所需的结构域间运动不兼容。

相似文献

2
Substrate selection by aminoacyl-tRNA synthetases.
Nucleic Acids Symp Ser. 1995(33):40-2.
3
Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling.
J Biol Chem. 2013 Nov 29;288(48):34736-45. doi: 10.1074/jbc.M113.510958. Epub 2013 Oct 20.
5
Escapement mechanisms: Efficient free energy transduction by reciprocally-coupled gating.
Proteins. 2020 May;88(5):710-717. doi: 10.1002/prot.25856. Epub 2019 Dec 13.

引用本文的文献

1
Aminoacyl-tRNA synthetase urzymes optimized by deep learning behave as a quasispecies.
Struct Dyn. 2025 Apr 25;12(2):024701. doi: 10.1063/4.0000294. eCollection 2025 Mar.
7
Reciprocally-Coupled Gating: Strange Loops in Bioenergetics, Genetics, and Catalysis.
Biomolecules. 2021 Feb 11;11(2):265. doi: 10.3390/biom11020265.
8
Impedance Matching and the Choice Between Alternative Pathways for the Origin of Genetic Coding.
Int J Mol Sci. 2020 Oct 7;21(19):7392. doi: 10.3390/ijms21197392.
9
The structural basis of the genetic code: amino acid recognition by aminoacyl-tRNA synthetases.
Sci Rep. 2020 Jul 28;10(1):12647. doi: 10.1038/s41598-020-69100-0.
10
Escapement mechanisms: Efficient free energy transduction by reciprocally-coupled gating.
Proteins. 2020 May;88(5):710-717. doi: 10.1002/prot.25856. Epub 2019 Dec 13.

本文引用的文献

1
Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling.
J Biol Chem. 2013 Nov 29;288(48):34736-45. doi: 10.1074/jbc.M113.510958. Epub 2013 Oct 20.
2
A locally closed conformation of a bacterial pentameric proton-gated ion channel.
Nat Struct Mol Biol. 2012 May 13;19(6):642-9. doi: 10.1038/nsmb.2307.
3
Structure-based model of allostery predicts coupling between distant sites.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4875-80. doi: 10.1073/pnas.1116274109. Epub 2012 Mar 8.
5
POVME: an algorithm for measuring binding-pocket volumes.
J Mol Graph Model. 2011 Feb;29(5):773-6. doi: 10.1016/j.jmgm.2010.10.007. Epub 2010 Nov 3.
6
Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation.
J Biol Chem. 2010 Dec 3;285(49):38590-601. doi: 10.1074/jbc.M110.136911. Epub 2010 Sep 23.
7
Adding new chemistries to the genetic code.
Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824.
9
Mg2+-assisted catalysis by B. stearothermophilus TrpRS is promoted by allosteric effects.
Structure. 2009 Jul 15;17(7):952-64. doi: 10.1016/j.str.2009.05.007.
10
Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1790-5. doi: 10.1073/pnas.0812752106. Epub 2009 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验