Suppr超能文献

在受限条件下用二硫醇连接体控制连接的氧化石墨烯体系的间距。

Controlling the spacing of the linked graphene oxide system with dithiol linkers under confinement.

作者信息

Sugak Nikita, Pham Hien, Datye Abhaya, Mukhopadhyay Shomeek, Tan Haiyan, Li Min, Pfefferle Lisa D

机构信息

Department of Chemical and Environmental Engineering, Yale University PO Box 208286 New Haven CT 06510-8286 USA

Department of Chemical & Biological Engineering, University of New Mexico Albuquerque NM 87131 USA.

出版信息

Nanoscale Adv. 2023 Aug 14;5(17):4553-4562. doi: 10.1039/d3na00324h. eCollection 2023 Aug 24.

Abstract

2D nanoscale confined systems exhibit behavior that is markedly different from that observed at the macroscale. Confinement can be tuned by controlling the interlayer spacing between confining layers using organic dithiol linkers. Adjusting spacing and selective intercalation have important impacts for catalysis, superconductivity, spin engineering, sodium ion batteries, 2D magnets, optoelectronics, and many other applications. In this study, we report how reaction conditions and organic linkers can be used to create variable, reproducible spacings between graphene oxide to provide confinement systems. We determined the conditions under which the spacing can be variably adjusted by the type of linker used, the concentration of the linker, and the reaction conditions. Employing dithiol linkers of different lengths, such as three (TPDT) and four (QPDT) aromatic rings, we can adjust the spacing between graphene oxide layers under varied reaction conditions. Here, we show that by varying dithiol linker length and using different reaction conditions, we can reproducibly control the spacing between graphene oxide layers from 0.37 nm to over 0.50 nm.

摘要

二维纳米尺度受限系统表现出与宏观尺度下所观察到的行为明显不同的行为。可以通过使用有机二硫醇连接体来控制受限层之间的层间距,从而调节限制作用。调整间距和选择性插层对催化、超导、自旋工程、钠离子电池、二维磁体、光电子学以及许多其他应用都有重要影响。在本研究中,我们报告了如何利用反应条件和有机连接体在氧化石墨烯之间创造可变的、可重现的间距,以提供受限系统。我们确定了可通过所用连接体的类型、连接体的浓度以及反应条件来可变地调整间距的条件。使用不同长度的二硫醇连接体,如含有三个(TPDT)和四个(QPDT)芳环的连接体,我们可以在不同的反应条件下调节氧化石墨烯层之间的间距。在此,我们表明,通过改变二硫醇连接体的长度并使用不同的反应条件,我们可以将氧化石墨烯层之间的间距可重现地控制在0.37纳米至超过0.50纳米之间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c72/10448350/15f64974be5a/d3na00324h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验