Suppr超能文献

评估国家在获得全球疫苗免疫联盟(Gavi)援助后过渡时期的表现:一项应用合成控制分析。

Evaluating Country Performance After Transitioning From Gavi Assistance: An Applied Synthetic Control Analysis.

机构信息

Palladium, Washington, DC, USA.

Centre d'Études et de Recherche sur le Développement International, Université Clermont Auvergne, Clermont-Ferrand, France.

出版信息

Glob Health Sci Pract. 2023 Aug 28;11(4). doi: 10.9745/GHSP-D-22-00536.

Abstract

INTRODUCTION

Over the past decade, international development assistance for health has slowed. As donors seek to increase domestic cofinancing and ultimately transition countries from donor aid dependence, COVID-19 has severely constrained public budgets. The evaluation of sustainability and longer-term impacts of donor withdrawal is increasingly important. We assess vaccination coverage and post-neonatal mortality to estimate country performance of these outcomes among countries that no longer received assistance from Gavi, the Vaccine Alliance (Gavi) between 2000 and 2018.

METHODS

Using data from all countries receiving Gavi support between 2000 and 2020, we employed a synthetic control method to generate a pre-transition counterfactual with the same characteristics as the observation of interest to predict a future that empirically never existed. The synthetic unit is constructed from the weighted average of other units with good fit to the unit of interest before transition but did not transition.

RESULTS

We found substantial heterogeneity after transitioning from Gavi assistance. China, Guyana, and Turkmenistan overperformed their expected coverage rates; Albania, Bhutan, China, Guyana, and Turkmenistan maintained coverage over 90%; and Bosnia and Herzegovina and Ukraine reported precipitous drop-offs that fell well below their synthetic controls. We also observed a vaccination coverage decline in 2020 for several countries after transitioning and most synthetic controls, which we attribute to COVID-19-related service disruptions.

CONCLUSIONS

We recommend that Gavi adjust its transition model to systematically assess contextual externalities and risk. In addition, countries that no longer receive Gavi assistance can leverage technical assistance and communities of practice to mutually assist each other and other countries advancing toward transition. This could also foster intracountry accountability after transition. We also recommend that Gavi systematize post-transition assessments and evaluations that leverage the expertise and experience of graduated countries to encourage cross-learning.

摘要

简介

在过去的十年中,国际卫生发展援助的速度已经放缓。随着捐助者寻求增加国内共同供资,并最终使各国摆脱对援助的依赖,COVID-19 严重限制了公共预算。评估捐助者退出的可持续性和更长期影响变得越来越重要。我们评估疫苗接种覆盖率和新生儿后期死亡率,以估计在 2000 年至 2018 年期间不再接受疫苗联盟(Gavi)援助的国家在这些结果方面的国家表现。

方法

利用 2000 年至 2020 年期间所有接受 Gavi 支持的国家的数据,我们采用综合控制方法生成与观察结果具有相同特征的预过渡反事实,以预测实际上从未存在过的未来。综合单位是从过渡前与感兴趣单位拟合良好的其他单位的加权平均值构建而成的,但没有过渡。

结果

我们发现,在过渡到 Gavi 援助之后,存在很大的异质性。中国、圭亚那和土库曼斯坦的疫苗接种覆盖率超过了预期水平;阿尔巴尼亚、不丹、中国、圭亚那和土库曼斯坦的覆盖率保持在 90%以上;波斯尼亚和黑塞哥维那和乌克兰的报告显示,疫苗接种率急剧下降,远低于其综合对照。我们还观察到,在过渡后,几个国家的疫苗接种覆盖率在 2020 年下降,这主要归因于与 COVID-19 相关的服务中断。

结论

我们建议 Gavi 调整其过渡模式,以系统地评估背景外部性和风险。此外,不再接受 Gavi 援助的国家可以利用技术援助和实践社区相互协助,并为其他正在过渡的国家提供协助。这也可以促进过渡后国家内部的问责制。我们还建议 Gavi 系统地进行过渡后评估和评价,利用毕业国家的专业知识和经验,鼓励相互学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044b/10461703/70fea49f5b00/GH-GHSP230079F001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验