Suppr超能文献

水分子对膜电极组件系统中铂电催化剂上一氧化碳还原的影响。

Influence of Water Molecules on CO Reduction at the Pt Electrocatalyst in the Membrane Electrode Assembly System.

作者信息

Matsuda Shofu, Yamanaka Shota, Umeda Minoru

机构信息

Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.

出版信息

ACS Appl Mater Interfaces. 2023 Sep 13;15(36):42676-42684. doi: 10.1021/acsami.3c09131. Epub 2023 Aug 29.

Abstract

CO electroreduction using a Pt catalyst in an aqueous solution system is known to produce only H. Recently, a remarkable result has been reported that CH can be obtained by reducing CO using a membrane electrode assembly (MEA) containing a Pt catalyst. A big difference that exists between the two systems is the number of water molecules. Therefore, this study investigated the influence of water molecules on the CO-reduction process at the Pt electrocatalyst in the MEA system. As a result, cyclic voltammetry indicated that adsorbed CO (CO) was formed by CO reduction in the MEA system more preferably than the aqueous solution system. In detail, the ratio of CO at the atop sites (linear CO, CO) on Pt, which participates in the CH generation reaction, to the total CO formed by the CO reduction became higher as the lower relative humidity (RH) at 50 °C in the MEA system. Cyclic voltammetry combined with in-line mass spectrometry revealed that the amount of CO and CH generated by the CO reduction reached their maximums at 63.1% RH. CH production by the extremely low-overpotential CO reduction was significantly achieved under all the RH conditions. Consequently, the Faradaic efficiency of the CH production at 63.1% RH was improved by 1.35 times compared to that at 100% RH. These results would be mainly obtained based on the HO-involved chemical equilibrium of the reactions for the CO and CH formation. Overall, the present study experimentally clarified that the formation of CO (particularly CO) and the following CH from the CO reduction at the Pt electrocatalyst in the MEA system was facilitated by appropriately controlling the water-molecule content.

摘要

已知在水溶液体系中使用铂催化剂进行一氧化碳电还原只能产生氢气。最近,有报道称使用含有铂催化剂的膜电极组件(MEA)还原一氧化碳可以得到甲烷。这两个体系之间存在的一个很大差异是水分子的数量。因此,本研究调查了水分子对MEA体系中铂电催化剂上一氧化碳还原过程的影响。结果表明,循环伏安法显示,与水溶液体系相比,MEA体系中一氧化碳还原更倾向于形成吸附态一氧化碳(CO)。具体而言,在MEA体系中,50℃时相对湿度(RH)越低,参与甲烷生成反应的铂顶位上的一氧化碳(线性CO,CO)与一氧化碳还原生成的总一氧化碳的比例越高。循环伏安法结合在线质谱分析表明,一氧化碳还原产生的一氧化碳和甲烷的量在相对湿度为63.1%时达到最大值。在所有相对湿度条件下,通过极低过电位的一氧化碳还原都能显著实现甲烷的生成。因此,与100%相对湿度相比,63.1%相对湿度下甲烷生成的法拉第效率提高了1.35倍。这些结果主要基于一氧化碳和甲烷形成反应中涉及水分子的化学平衡得出。总体而言,本研究通过实验阐明,通过适当控制水分子含量,MEA体系中铂电催化剂上一氧化碳还原生成一氧化碳(特别是CO)以及随后生成甲烷的过程得到了促进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验