Suppr超能文献

基于功能磁共振的多尺度动态图学习在脑疾病检测中的应用

Multi-Scale Dynamic Graph Learning for Brain Disorder Detection With Functional MRI.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:3501-3512. doi: 10.1109/TNSRE.2023.3309847. Epub 2023 Sep 4.

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used in the detection of brain disorders such as autism spectrum disorder based on various machine/deep learning techniques. Learning-based methods typically rely on functional connectivity networks (FCNs) derived from blood-oxygen-level-dependent time series of rs-fMRI data to capture interactions between brain regions-of-interest (ROIs). Graph neural networks have been recently used to extract fMRI features from graph-structured FCNs, but cannot effectively characterize spatiotemporal dynamics of FCNs, e.g., the functional connectivity of brain ROIs is dynamically changing in a short period of time. Also, many studies usually focus on single-scale topology of FCN, thereby ignoring the potential complementary topological information of FCN at different spatial resolutions. To this end, in this paper, we propose a multi-scale dynamic graph learning (MDGL) framework to capture multi-scale spatiotemporal dynamic representations of rs-fMRI data for automated brain disorder diagnosis. The MDGL framework consists of three major components: 1) multi-scale dynamic FCN construction using multiple brain atlases to model multi-scale topological information, 2) multi-scale dynamic graph representation learning to capture spatiotemporal information conveyed in fMRI data, and 3) multi-scale feature fusion and classification. Experimental results on two datasets show that MDGL outperforms several state-of-the-art methods.

摘要

静息态功能磁共振成像(rs-fMRI)已被广泛应用于基于各种机器学习/深度学习技术的脑疾病(如自闭症谱系障碍)的检测中。基于学习的方法通常依赖于从 rs-fMRI 数据的血氧水平依赖时间序列中提取的功能连通性网络(FCN),以捕获脑感兴趣区(ROI)之间的相互作用。图神经网络最近被用于从图结构的 FCN 中提取 fMRI 特征,但不能有效地描述 FCN 的时空动态,例如,脑 ROI 的功能连通性在短时间内是动态变化的。此外,许多研究通常集中于 FCN 的单一尺度拓扑结构,从而忽略了 FCN 在不同空间分辨率下的潜在互补拓扑信息。为此,在本文中,我们提出了一种多尺度动态图学习(MDGL)框架,用于捕捉 rs-fMRI 数据的多尺度时空动态表示,以实现自动化脑疾病诊断。MDGL 框架由三个主要部分组成:1)使用多个脑图谱构建多尺度动态 FCN,以模拟多尺度拓扑信息;2)多尺度动态图表示学习,以捕获 fMRI 数据中传递的时空信息;3)多尺度特征融合与分类。在两个数据集上的实验结果表明,MDGL 优于几种最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验