From the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.
College of Medicine, University of Kentucky, Lexington, KY.
Sex Transm Dis. 2023 Nov 1;50(11):739-745. doi: 10.1097/OLQ.0000000000001854. Epub 2023 Aug 16.
BACKGROUND: Sexually transmitted infections (STIs) among youth aged 12 to 24 years have doubled in the last 13 years, accounting for 50% of STIs nationally. We need to identify predictors of STI among youth in urban HIV epicenters. METHODS: Sexual and gender minority (gay, bisexual, transgender, gender-diverse) and other youth with multiple life stressors (homelessness, incarceration, substance use, mental health disorders) were recruited from 13 sites in Los Angeles and New Orleans (N = 1482). Self-reports and rapid diagnostic tests for STI, HIV, and drug use were conducted at 4-month intervals for up to 24 months. Machine learning was used to identify predictors of time until new STI (including a new HIV diagnosis). RESULTS: At recruitment, 23.9% of youth had a current or past STI. Over 24 months, 19.3% tested positive for a new STI. Heterosexual males had the lowest STI rate (12%); African American youth were 23% more likely to acquire an STI compared with peers of other ethnicities. Time to STI was best predicted by attending group sex venues or parties, moderate but not high dating app use, and past STI and HIV seropositive status. CONCLUSIONS: Sexually transmitted infections are concentrated among a subset of young people at highest risk. The best predictors of youth's risk are their sexual environments and networks. Machine learning will allow the next generation of research on predictive patterns of risk to be more robust.
背景:在过去的 13 年中,12 至 24 岁的青年人群中的性传播感染(STI)增加了一倍,占全国 STI 的 50%。我们需要确定城市艾滋病毒中心的青年中的 STI 预测因素。
方法:从洛杉矶和新奥尔良的 13 个地点招募了性和性别少数群体(同性恋、双性恋、跨性别、性别多样化)和其他有多种生活压力源的青年(无家可归、监禁、药物使用、心理健康障碍)(N=1482)。在 4 个月的间隔内进行了性行为和性别少数群体(同性恋、双性恋、跨性别、性别多样化)和其他有多种生活压力源(无家可归、监禁、药物使用、心理健康障碍)的自我报告和 STI、HIV 和药物使用的快速诊断测试,最多可达 24 个月。使用机器学习来识别新 STI(包括新的 HIV 诊断)的时间预测因素。
结果:在招募时,23.9%的青年有当前或过去的 STI。在 24 个月内,有 19.3%的人新诊断出 STI。异性恋男性的 STI 率最低(12%);与其他种族的同龄人相比,非裔美国青年感染 STI 的可能性高 23%。STI 时间的最佳预测因素是参加群体性行为场所或聚会、适度但非高度使用约会应用程序以及过去的 STI 和 HIV 阳性状态。
结论:性传播感染集中在风险最高的青年亚群中。预测年轻人风险的最佳指标是他们的性环境和网络。机器学习将使下一代更具预测性的风险研究更加稳健。
Cochrane Database Syst Rev. 2004
Online J Public Health Inform. 2025-8-12
Cochrane Database Syst Rev. 2001
Cochrane Database Syst Rev. 2011-3-16
Cochrane Database Syst Rev. 2013-10-26
AIDS Behav. 2022-6
Obstet Gynecol. 2021-2-1
Expert Rev Cardiovasc Ther. 2020-2