Suppr超能文献

利用机器学习识别参与 ATN 方案 147、148 和 149 的 HIV 感染者或 HIV 高危人群中随时间变化的性传播感染预测因素。

Using Machine Learning to Identify Predictors of Sexually Transmitted Infections Over Time Among Young People Living With or at Risk for HIV Who Participated in ATN Protocols 147, 148, and 149.

机构信息

From the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.

College of Medicine, University of Kentucky, Lexington, KY.

出版信息

Sex Transm Dis. 2023 Nov 1;50(11):739-745. doi: 10.1097/OLQ.0000000000001854. Epub 2023 Aug 16.

Abstract

BACKGROUND

Sexually transmitted infections (STIs) among youth aged 12 to 24 years have doubled in the last 13 years, accounting for 50% of STIs nationally. We need to identify predictors of STI among youth in urban HIV epicenters.

METHODS

Sexual and gender minority (gay, bisexual, transgender, gender-diverse) and other youth with multiple life stressors (homelessness, incarceration, substance use, mental health disorders) were recruited from 13 sites in Los Angeles and New Orleans (N = 1482). Self-reports and rapid diagnostic tests for STI, HIV, and drug use were conducted at 4-month intervals for up to 24 months. Machine learning was used to identify predictors of time until new STI (including a new HIV diagnosis).

RESULTS

At recruitment, 23.9% of youth had a current or past STI. Over 24 months, 19.3% tested positive for a new STI. Heterosexual males had the lowest STI rate (12%); African American youth were 23% more likely to acquire an STI compared with peers of other ethnicities. Time to STI was best predicted by attending group sex venues or parties, moderate but not high dating app use, and past STI and HIV seropositive status.

CONCLUSIONS

Sexually transmitted infections are concentrated among a subset of young people at highest risk. The best predictors of youth's risk are their sexual environments and networks. Machine learning will allow the next generation of research on predictive patterns of risk to be more robust.

摘要

背景

在过去的 13 年中,12 至 24 岁的青年人群中的性传播感染(STI)增加了一倍,占全国 STI 的 50%。我们需要确定城市艾滋病毒中心的青年中的 STI 预测因素。

方法

从洛杉矶和新奥尔良的 13 个地点招募了性和性别少数群体(同性恋、双性恋、跨性别、性别多样化)和其他有多种生活压力源的青年(无家可归、监禁、药物使用、心理健康障碍)(N=1482)。在 4 个月的间隔内进行了性行为和性别少数群体(同性恋、双性恋、跨性别、性别多样化)和其他有多种生活压力源(无家可归、监禁、药物使用、心理健康障碍)的自我报告和 STI、HIV 和药物使用的快速诊断测试,最多可达 24 个月。使用机器学习来识别新 STI(包括新的 HIV 诊断)的时间预测因素。

结果

在招募时,23.9%的青年有当前或过去的 STI。在 24 个月内,有 19.3%的人新诊断出 STI。异性恋男性的 STI 率最低(12%);与其他种族的同龄人相比,非裔美国青年感染 STI 的可能性高 23%。STI 时间的最佳预测因素是参加群体性行为场所或聚会、适度但非高度使用约会应用程序以及过去的 STI 和 HIV 阳性状态。

结论

性传播感染集中在风险最高的青年亚群中。预测年轻人风险的最佳指标是他们的性环境和网络。机器学习将使下一代更具预测性的风险研究更加稳健。

相似文献

4
Population-based interventions for reducing sexually transmitted infections, including HIV infection.
Cochrane Database Syst Rev. 2004(2):CD001220. doi: 10.1002/14651858.CD001220.pub2.
7
Population-based interventions for reducing sexually transmitted infections, including HIV infection.
Cochrane Database Syst Rev. 2001(2):CD001220. doi: 10.1002/14651858.CD001220.
8
Population-based biomedical sexually transmitted infection control interventions for reducing HIV infection.
Cochrane Database Syst Rev. 2011 Mar 16(3):CD001220. doi: 10.1002/14651858.CD001220.pub3.
10
Behavioral interventions for improving condom use for dual protection.
Cochrane Database Syst Rev. 2013 Oct 26;2013(10):CD010662. doi: 10.1002/14651858.CD010662.pub2.

本文引用的文献

1
Gay Dating App Users Support and Utilize Sexual Health Features on Apps.
AIDS Behav. 2022 Jun;26(6):2081-2090. doi: 10.1007/s10461-021-03554-9. Epub 2022 Jan 11.
3
Sexually Transmitted Infections Among US Women and Men: Prevalence and Incidence Estimates, 2018.
Sex Transm Dis. 2021 Apr 1;48(4):208-214. doi: 10.1097/OLQ.0000000000001355.
4
Racial and Ethnic Disparities in Reproductive Health Services and Outcomes, 2020.
Obstet Gynecol. 2021 Feb 1;137(2):225-233. doi: 10.1097/AOG.0000000000004224.
5
Sexual and Gender Minority Youth and Sexual Health Education: A Systematic Mapping Review of the Literature.
J Adolesc Health. 2021 Jun;68(6):1040-1052. doi: 10.1016/j.jadohealth.2020.09.032. Epub 2020 Nov 5.
9
Machine learning for predicting cardiac events: what does the future hold?
Expert Rev Cardiovasc Ther. 2020 Feb;18(2):77-84. doi: 10.1080/14779072.2020.1732208. Epub 2020 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验