Department of Industrial and Systems Engineering, Mississippi State University, Mississippi State, Mississippi, USA.
Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi, USA.
Med Phys. 2024 Mar;51(3):2007-2019. doi: 10.1002/mp.16680. Epub 2023 Aug 29.
BACKGROUND: Diagnosis and treatment management for head and neck squamous cell carcinoma (HNSCC) is guided by routine diagnostic head and neck computed tomography (CT) scans to identify tumor and lymph node features. The extracapsular extension (ECE) is a strong predictor of patients' survival outcomes with HNSCC. It is essential to detect the occurrence of ECE as it changes staging and treatment planning for patients. Current clinical ECE detection relies on visual identification and pathologic confirmation conducted by clinicians. However, manual annotation of the lymph node region is a required data preprocessing step in most of the current machine learning-based ECE diagnosis studies. PURPOSE: In this paper, we propose a Gradient Mapping Guided Explainable Network (GMGENet) framework to perform ECE identification automatically without requiring annotated lymph node region information. METHODS: The gradient-weighted class activation mapping (Grad-CAM) technique is applied to guide the deep learning algorithm to focus on the regions that are highly related to ECE. The proposed framework includes an extractor and a classifier. In a joint training process, informative volumes of interest (VOIs) are extracted by the extractor without labeled lymph node region information, and the classifier learns the pattern to classify the extracted VOIs into ECE positive and negative. RESULTS: In evaluation, the proposed methods are well-trained and tested using cross-validation. GMGENet achieved test accuracy and area under the curve (AUC) of 92.2% and 89.3%, respectively. GMGENetV2 achieved 90.3% accuracy and 91.7% AUC in the test. The results were compared with different existing models and further confirmed and explained by generating ECE probability heatmaps via a Grad-CAM technique. The presence or absence of ECE has been analyzed and correlated with ground truth histopathological findings. CONCLUSIONS: The proposed deep network can learn meaningful patterns to identify ECE without providing lymph node contours. The introduced ECE heatmaps will contribute to the clinical implementations of the proposed model and reveal unknown features to radiologists. The outcome of this study is expected to promote the implementation of explainable artificial intelligence-assiste ECE detection.
背景:头颈部鳞状细胞癌(HNSCC)的诊断和治疗管理由常规诊断性头颈部计算机断层扫描(CT)来指导,以识别肿瘤和淋巴结特征。包膜外扩展(ECE)是 HNSCC 患者生存结果的强有力预测指标。检测 ECE 的发生至关重要,因为它会改变患者的分期和治疗计划。目前,临床 ECE 的检测依赖于临床医生进行的视觉识别和病理确认。然而,在大多数基于机器学习的 ECE 诊断研究中,对淋巴结区域进行手动注释是数据预处理的必要步骤。
目的:在本文中,我们提出了一个梯度映射引导可解释网络(GMGENet)框架,在不需要淋巴结区域注释信息的情况下自动进行 ECE 识别。
方法:应用梯度加权类激活映射(Grad-CAM)技术来指导深度学习算法关注与 ECE 高度相关的区域。所提出的框架包括一个提取器和一个分类器。在联合训练过程中,提取器在没有标记的淋巴结区域信息的情况下提取信息丰富的感兴趣体积(VOI),分类器学习模式将提取的 VOI 分类为 ECE 阳性和阴性。
结果:在评估中,使用交叉验证对提出的方法进行了良好的训练和测试。GMGENet 的测试准确率和曲线下面积(AUC)分别达到 92.2%和 89.3%。GMGENetV2 的测试准确率为 90.3%,AUC 为 91.7%。通过 Grad-CAM 技术生成 ECE 概率热图,与不同的现有模型进行了比较,并进一步得到了验证和解释。分析了有无 ECE 的存在,并与组织病理学的真实结果相关联。
结论:所提出的深度网络可以在不提供淋巴结轮廓的情况下学习到有意义的模式来识别 ECE。引入的 ECE 热图将有助于临床实施所提出的模型,并向放射科医生揭示未知的特征。这项研究的结果有望促进可解释的人工智能辅助 ECE 检测的实施。
Clin Oncol (R Coll Radiol). 2023-7