文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有可解释性驱动见解的先进动态集成框架,用于跨数据集的精确脑肿瘤分类。

Advanced dynamic ensemble framework with explainability driven insights for precision brain tumor classification across datasets.

作者信息

Singh Retinderdeep, Gupta Sheifali, Ibrahim Ashraf Osman, Gabralla Lubna A, Bharany Salil, Rehman Ateeq Ur, Hussen Seada

机构信息

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.

Department of Computing, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.

出版信息

Sci Rep. 2025 Aug 8;15(1):29090. doi: 10.1038/s41598-025-14917-w.


DOI:10.1038/s41598-025-14917-w
PMID:40781137
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12334749/
Abstract

Accurate detection of brain tumors remains a significant challenge due to the diversity of tumor types along with human interventions during diagnostic process. This study proposes a novel ensemble deep learning system for accurate brain tumor classification using MRI data. The proposed system integrates fine-tuned Convolutional Neural Network (CNN), ResNet-50 and EfficientNet-B5 to create a dynamic ensemble framework that addresses existing challenges. An adaptive dynamic weight distribution strategy is employed during training to optimize the contribution of each networks in the framework. To address class imbalance and improve model generalization, a customized weighted cross-entropy loss function is incorporated. The model obtains improved interpretability through explainabile artificial intelligence (XAI) techniques, including Grad-CAM, SHAP, SmoothGrad, and LIME, providing deeper insights into prediction rationale. The proposed system achieves a classification accuracy of 99.4% on the test set, 99.48% on the validation set, and 99.31% in cross-dataset validation. Furthermore, entropy-based uncertainty analysis quantifies prediction confidence, yielding an average entropy of 0.3093 and effectively identifying uncertain predictions to mitigate diagnostic errors. Overall, the proposed framework demonstrates high accuracy, robustness, and interpretability, highlighting its potential for integration into automated brain tumor diagnosis systems.

摘要

由于肿瘤类型的多样性以及诊断过程中的人为干预,准确检测脑肿瘤仍然是一项重大挑战。本研究提出了一种新颖的集成深度学习系统,用于使用MRI数据进行准确的脑肿瘤分类。该系统集成了微调后的卷积神经网络(CNN)、ResNet-50和EfficientNet-B5,以创建一个解决现有挑战的动态集成框架。在训练过程中采用自适应动态权重分配策略,以优化框架中每个网络的贡献。为了解决类别不平衡问题并提高模型泛化能力,引入了定制的加权交叉熵损失函数。该模型通过包括Grad-CAM、SHAP、SmoothGrad和LIME在内的可解释人工智能(XAI)技术获得了更高的可解释性,从而更深入地了解预测原理。所提出的系统在测试集上的分类准确率为99.4%,在验证集上为99.48%,在跨数据集验证中为

相似文献

[1]
Advanced dynamic ensemble framework with explainability driven insights for precision brain tumor classification across datasets.

Sci Rep. 2025-8-8

[2]
Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Sci Rep. 2025-7-1

[3]
Ensemble-based Convolutional Neural Networks for brain tumor classification in MRI: Enhancing accuracy and interpretability using explainable AI.

Comput Biol Med. 2025-9

[4]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[5]
BioTransX: A novel bi-former based hybrid model with bi-level routing attention for brain tumor classification with explainable insights.

Comput Biol Med. 2025-9

[6]
Multiclass skin lesion classification and localziation from dermoscopic images using a novel network-level fused deep architecture and explainable artificial intelligence.

BMC Med Inform Decis Mak. 2025-7-1

[7]
Enhanced MRI brain tumor detection using deep learning in conjunction with explainable AI SHAP based diverse and multi feature analysis.

Sci Rep. 2025-8-11

[8]
Pyramidal attention-based T network for brain tumor classification: a comprehensive analysis of transfer learning approaches for clinically reliable and reliable AI hybrid approaches.

Sci Rep. 2025-8-6

[9]
A fine tuned EfficientNet-B0 convolutional neural network for accurate and efficient classification of apple leaf diseases.

Sci Rep. 2025-7-16

[10]
Novel Artificial Intelligence-Driven Infant Meningitis Screening From High-Resolution Ultrasound Imaging.

Ultrasound Med Biol. 2025-6-28

本文引用的文献

[1]
Asymmetric Adaptive Heterogeneous Network for Multi-Modality Medical Image Segmentation.

IEEE Trans Med Imaging. 2025-4

[2]
Brain Tumor MRI Classification Using a Novel Deep Residual and Regional CNN.

Biomedicines. 2024-6-23

[3]
Explainable AI for Interpretation of Ovarian Tumor Classification Using Enhanced ResNet50.

Diagnostics (Basel). 2024-7-19

[4]
Deep learning and radiomics-based approach to meningioma grading: exploring the potential value of peritumoral edema regions.

Phys Med Biol. 2024-4-26

[5]
Multimodal Biomedical Image Segmentation using Multi-Dimensional U-Convolutional Neural Network.

BMC Med Imaging. 2024-2-8

[6]
Evaluating the clinical utility of artificial intelligence assistance and its explanation on the glioma grading task.

Artif Intell Med. 2024-2

[7]
A hybrid deep CNN model for brain tumor image multi-classification.

BMC Med Imaging. 2024-1-19

[8]
Childhood, adolescent, and adult primary brain and central nervous system tumor statistics for practicing healthcare providers in neuro-oncology, CBTRUS 2015-2019.

Neurooncol Pract. 2023-9-28

[9]
A Novel Deep Learning Model for Medical Image Segmentation with Convolutional Neural Network and Transformer.

Interdiscip Sci. 2023-12

[10]
A gradient mapping guided explainable deep neural network for extracapsular extension identification in 3D head and neck cancer computed tomography images.

Med Phys. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索