Singh Retinderdeep, Gupta Sheifali, Ibrahim Ashraf Osman, Gabralla Lubna A, Bharany Salil, Rehman Ateeq Ur, Hussen Seada
Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
Department of Computing, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.
Sci Rep. 2025 Aug 8;15(1):29090. doi: 10.1038/s41598-025-14917-w.
Accurate detection of brain tumors remains a significant challenge due to the diversity of tumor types along with human interventions during diagnostic process. This study proposes a novel ensemble deep learning system for accurate brain tumor classification using MRI data. The proposed system integrates fine-tuned Convolutional Neural Network (CNN), ResNet-50 and EfficientNet-B5 to create a dynamic ensemble framework that addresses existing challenges. An adaptive dynamic weight distribution strategy is employed during training to optimize the contribution of each networks in the framework. To address class imbalance and improve model generalization, a customized weighted cross-entropy loss function is incorporated. The model obtains improved interpretability through explainabile artificial intelligence (XAI) techniques, including Grad-CAM, SHAP, SmoothGrad, and LIME, providing deeper insights into prediction rationale. The proposed system achieves a classification accuracy of 99.4% on the test set, 99.48% on the validation set, and 99.31% in cross-dataset validation. Furthermore, entropy-based uncertainty analysis quantifies prediction confidence, yielding an average entropy of 0.3093 and effectively identifying uncertain predictions to mitigate diagnostic errors. Overall, the proposed framework demonstrates high accuracy, robustness, and interpretability, highlighting its potential for integration into automated brain tumor diagnosis systems.
由于肿瘤类型的多样性以及诊断过程中的人为干预,准确检测脑肿瘤仍然是一项重大挑战。本研究提出了一种新颖的集成深度学习系统,用于使用MRI数据进行准确的脑肿瘤分类。该系统集成了微调后的卷积神经网络(CNN)、ResNet-50和EfficientNet-B5,以创建一个解决现有挑战的动态集成框架。在训练过程中采用自适应动态权重分配策略,以优化框架中每个网络的贡献。为了解决类别不平衡问题并提高模型泛化能力,引入了定制的加权交叉熵损失函数。该模型通过包括Grad-CAM、SHAP、SmoothGrad和LIME在内的可解释人工智能(XAI)技术获得了更高的可解释性,从而更深入地了解预测原理。所提出的系统在测试集上的分类准确率为99.4%,在验证集上为99.48%,在跨数据集验证中为
Ultrasound Med Biol. 2025-6-28
IEEE Trans Med Imaging. 2025-4
Biomedicines. 2024-6-23
Diagnostics (Basel). 2024-7-19
BMC Med Imaging. 2024-2-8
BMC Med Imaging. 2024-1-19