Islam Md Shariful, Molley Thomas G, Hung Tzong-Tyng, Sathish C I, Putra Vina D L, Jalandhra Gagan K, Ireland Jake, Li Yancheng, Yi Jiabao, Kruzic Jamie J, Kilian Kristopher A
School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia.
Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia.
ACS Appl Mater Interfaces. 2023 Nov 8;15(44):50663-50678. doi: 10.1021/acsami.3c07021. Epub 2023 Aug 29.
The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.
组织中的细胞外基质由具有层次结构和动态力学特性的复杂异质软材料组成,这些特性决定了细胞和组织水平的功能。在许多天然基质中,存在纳米纤维结构,可用于引导细胞活动并决定组织的形态和功能。具有集成纳米纤维的合成水凝胶可以模拟天然组织的结构特性;然而,具有动态力学特性的模型系统仍然难以捉摸。在这里,我们展示了模块化纳米纤维水凝胶,其可以响应施加的磁场而可逆地变硬。通过静电纺丝将氧化铁纳米颗粒掺入明胶纳米纤维中,然后进行化学稳定和破碎。这些磁活性纳米纤维可以与几乎任何水凝胶材料混合,并在低纤维含量(≤3%)下使基质可逆地变硬。与之前大量磁性材料阻碍细胞封装的工作不同,低纳米纤维含量允许在三维空间中使含有细胞的基质变硬。使用脂肪来源的干细胞,我们展示了纳米纤维基质如何对成骨和成脂都有益,其中通过施加磁场使水凝胶变硬可增强成骨作用,同时抑制成脂作用。骨骼肌成肌细胞祖细胞被用作组织形态发生的模型,基质变硬增强了成肌作用和多核肌管的形成。通过磁刺激使纤维水凝胶可逆变硬的能力为研究细胞培养中的纳米拓扑和动态力学提供了一个有用的工具,为组织工程中的刺激响应材料提供了广阔的应用前景。