Suppr超能文献

使用缩短时长的动态心电图进行室性心动过速风险预测。

Ventricular tachycardia risk prediction with an abbreviated duration mobile cardiac telemetry.

作者信息

Economou Lundeberg Johan, Måneheim Alexandra, Persson Anders, Dziubinski Marek, Sridhar Arun, Healey Jeffrey S, Slusarczyk Magdalena, Engström Gunnar, Johnson Linda S

机构信息

Department of Clinical Physiology, Skåne University Hospital, Lund, Sweden.

Department of Clinical Sciences, Lund University, Malmö, Sweden.

出版信息

Heart Rhythm O2. 2023 Jun 30;4(8):500-505. doi: 10.1016/j.hroo.2023.06.009. eCollection 2023 Aug.

Abstract

BACKGROUND

Ventricular tachycardia (VT) occurs intermittently, unpredictably, and has potentially lethal consequences.

OBJECTIVE

Our aim was to derive a risk prediction model for VT episodes ≥10 beats detected on 30-day mobile cardiac telemetry based on the first 24 hours of the recording.

METHODS

We included patients who were monitored for 2 to 30 days in the United States using full-disclosure mobile cardiac telemetry, without any VT episode ≥10 beats on the first full recording day. An elastic net prediction model was derived for the outcome of VT ≥10 beats on monitoring days 2 to 30. Potential predictors included age, sex, and electrocardiographic data from the first 24 hours: heart rate; premature atrial and ventricular complexes occurring as singlets, couplets, triplets, and runs; and the fastest rate for each event. The population was randomly split into training (70%) and testing (30%) samples.

RESULTS

In a population of 19,781 patients (mean age 65.3 ± 17.1 years, 43.5% men), with a median recording time of 18.6 ± 9.6 days, 1510 patients had at least 1 VT ≥10 beats. The prediction model had good discrimination in the testing sample (area under the receiver-operating characteristic curve 0.7584, 95% confidence interval 0.7340-0.7829). A model excluding age and sex had an equally good discrimination (area under the receiver-operating characteristic curve 0.7579, 95% confidence interval 0.7332-0.7825). In the top quintile of the score, more than 1 in 5 patients had a VT ≥10 beats, while the bottom quintile had a 98.2% negative predictive value.

CONCLUSION

Our model can predict risk of VT ≥10 beats in the near term using variables derived from 24-hour electrocardiography, and could be used to triage patients to extended monitoring.

摘要

背景

室性心动过速(VT)发作具有间歇性、不可预测性,且可能产生致命后果。

目的

我们的目标是基于记录的前24小时数据,推导一个用于预测30天动态心电图监测中检测到的室性心动过速发作≥10次的心搏的风险预测模型。

方法

我们纳入了在美国使用全披露动态心电图监测2至30天的患者,且在首个完整记录日无任何室性心动过速发作≥10次的心搏。针对监测第2至30天室性心动过速≥10次的心搏这一结局,推导了弹性网络预测模型。潜在预测因素包括年龄、性别以及前24小时的心电图数据:心率;单发、成对、三联律和连续出现的房性和室性早搏;以及每个事件的最快心率。将总体随机分为训练样本(70%)和测试样本(30%)。

结果

在19781例患者(平均年龄65.3±17.1岁,43.5%为男性)中,记录时间中位数为18.6±9.6天,1510例患者至少有1次室性心动过速发作≥10次的心搏。预测模型在测试样本中具有良好的区分度(受试者工作特征曲线下面积为0.7584,95%置信区间为0.7340 - 0.7829)。一个排除年龄和性别的模型具有同样良好的区分度(受试者工作特征曲线下面积为0.7579,95%置信区间为0.7332 - 0.7825)。在得分最高的五分之一患者中,超过五分之一的患者有室性心动过速发作≥10次的心搏,而得分最低的五分之一患者的阴性预测值为98.2%。

结论

我们的模型可以使用从24小时心电图得出的变量预测近期室性心动过速发作≥10次的心搏的风险,并可用于对患者进行分类以便延长监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a898/10461200/8c23df4466a1/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验