Suppr超能文献

使用人工智能预测心源性猝死:现状与未来方向。

Prediction of sudden cardiac death using artificial intelligence: Current status and future directions.

作者信息

Kolk Maarten Z H, Ruipérez-Campillo Samuel, Wilde Arthur A M, Knops Reinoud E, Narayan Sanjiv M, Tjong Fleur V Y

机构信息

Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, Amsterdam, The Netherlands.

Department of Computer Science, ETH Zurich, Zurich, Switzerland.

出版信息

Heart Rhythm. 2025 Mar;22(3):756-766. doi: 10.1016/j.hrthm.2024.09.003. Epub 2024 Sep 6.

Abstract

Sudden cardiac death (SCD) remains a pressing health issue, affecting hundreds of thousands each year globally. The heterogeneity among people who suffer a SCD, ranging from individuals with severe heart failure to seemingly healthy individuals, poses a significant challenge for effective risk assessment. Conventional risk stratification, which primarily relies on left ventricular ejection fraction, has resulted in only modest efficacy of implantable cardioverter-defibrillators for SCD prevention. In response, artificial intelligence (AI) holds promise for personalized SCD risk prediction and tailoring preventive strategies to the unique profiles of individual patients. Machine and deep learning algorithms have the capability to learn intricate nonlinear patterns between complex data and defined end points, and leverage these to identify subtle indicators and predictors of SCD that may not be apparent through traditional statistical analysis. However, despite the potential of AI to improve SCD risk stratification, there are important limitations that need to be addressed. We aim to provide an overview of the current state-of-the-art of AI prediction models for SCD, highlight the opportunities for these models in clinical practice, and identify the key challenges hindering widespread adoption.

摘要

心脏性猝死(SCD)仍然是一个紧迫的健康问题,全球每年有数十万人受其影响。SCD患者存在异质性,从严重心力衰竭患者到看似健康的个体都有,这给有效的风险评估带来了重大挑战。传统的风险分层主要依赖左心室射血分数,导致植入式心脏复律除颤器在预防SCD方面的疗效有限。作为回应,人工智能(AI)有望实现个性化的SCD风险预测,并根据个体患者的独特特征制定预防策略。机器学习和深度学习算法有能力学习复杂数据与特定终点之间复杂的非线性模式,并利用这些模式识别SCD的细微指标和预测因素,而这些通过传统统计分析可能并不明显。然而,尽管AI有改善SCD风险分层的潜力,但仍有一些重要的局限性需要解决。我们旨在概述当前SCD的AI预测模型的最新情况,强调这些模型在临床实践中的机会,并确定阻碍其广泛应用的关键挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae17/12057726/6cf8c1b99439/nihms-2075109-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验