Suppr超能文献

Voyager:基于地理空间统计学的探索性单细胞基因组数据分析

Voyager: exploratory single-cell genomics data analysis with geospatial statistics.

作者信息

Moses Lambda, Einarsson Pétur Helgi, Jackson Kayla, Luebbert Laura, Booeshaghi A Sina, Antonsson Sindri, Bray Nicolas, Melsted Páll, Pachter Lior

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, Reykjavík, Iceland.

出版信息

bioRxiv. 2023 Aug 19:2023.07.20.549945. doi: 10.1101/2023.07.20.549945.

Abstract

Exploratory spatial data analysis (ESDA) can be a powerful approach to understanding single-cell genomics datasets, but it is not yet part of standard data analysis workflows. In particular, geospatial analyses, which have been developed and refined for decades, have yet to be fully adapted and applied to spatial single-cell analysis. We introduce the Voyager platform, which systematically brings the geospatial ESDA tradition to (spatial) -omics, with local, bivariate, and multivariate spatial methods not yet commonly applied to spatial -omics, united by a uniform user interface. Using Voyager, we showcase biological insights that can be derived with its methods, such as biologically relevant negative spatial autocorrelation. Underlying Voyager is the SpatialFeatureExperiment data structure, which combines Simple Feature with SingleCellExperiment and AnnData to represent and operate on geometries bundled with gene expression data. Voyager has comprehensive tutorials demonstrating ESDA built on GitHub Actions to ensure reproducibility and scalability, using data from popular commercial technologies. Voyager is implemented in both R/Bioconductor and Python/PyPI, and features compatibility tests to ensure that both implementations return consistent results.

摘要

探索性空间数据分析(ESDA)可能是理解单细胞基因组学数据集的一种强大方法,但它尚未成为标准数据分析工作流程的一部分。特别是,已经发展和完善了几十年的地理空间分析尚未完全适应并应用于空间单细胞分析。我们引入了Voyager平台,该平台系统地将地理空间ESDA传统引入(空间)组学,其局部、双变量和多变量空间方法尚未普遍应用于空间组学,通过统一的用户界面将它们结合在一起。使用Voyager,我们展示了可以通过其方法得出的生物学见解,例如生物学相关的负空间自相关。Voyager的基础是SpatialFeatureExperiment数据结构,它将简单要素与SingleCellExperiment和AnnData相结合,以表示和操作与基因表达数据捆绑在一起的几何图形。Voyager有全面的教程,展示了基于GitHub Actions构建的ESDA,以确保可重复性和可扩展性,使用来自流行商业技术的数据。Voyager在R/Bioconductor和Python/PyPI中都有实现,并具有兼容性测试以确保两种实现都返回一致的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/893e/10461913/4cac039e9eaa/nihpp-2023.07.20.549945v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验