Suppr超能文献

通过图注意力网络整合多模态信息以检测空间转录组学的空间域。

Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.

作者信息

Huo Yuying, Guo Yilang, Wang Jiakang, Xue Huijie, Feng Yujuan, Chen Weizheng, Li Xiangyu

机构信息

School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China.

School of Software Engineering, Beijing University of Technology, Beijing 100124, China.

出版信息

J Genet Genomics. 2023 Sep;50(9):720-733. doi: 10.1016/j.jgg.2023.06.005. Epub 2023 Jun 23.

Abstract

Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ. Spatial transcriptomics can provide multimodal and complementary information simultaneously, including gene expression profiles, spatial locations, and histology images. However, most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images. To fully leverage the multi-modal information, we propose a SPAtially embedded Deep Attentional graph Clustering (SpaDAC) method to identify spatial domains while reconstructing denoised gene expression profiles. This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives. Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets. SpaDAC is a valuable tool for spatial domain detection, facilitating the comprehension of tissue architecture and cellular microenvironment. The source code of SpaDAC is freely available at Github (https://github.com/huoyuying/SpaDAC.git).

摘要

空间分辨转录组技术的最新进展为原位阐明组织结构和功能带来了前所未有的机遇。空间转录组学可以同时提供多模态和互补信息,包括基因表达谱、空间位置和组织学图像。然而,大多数现有方法在有效利用空间信息和匹配的高分辨率组织学图像方面存在局限性。为了充分利用多模态信息,我们提出了一种空间嵌入深度注意力图聚类(SpaDAC)方法,用于识别空间域,同时重建去噪后的基因表达谱。该方法可以通过构建多视图图模块来捕获空间位置连接和形态连接,从而有效地学习空间转录组数据的低维嵌入。基准测试结果表明,SpaDAC在最近的几个空间转录组数据集上优于其他算法。SpaDAC是一种用于空间域检测的有价值工具,有助于理解组织结构和细胞微环境。SpaDAC的源代码可在Github(https://github.com/huoyuying/SpaDAC.git)上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验