Suppr超能文献

SpatialCTD:用于评估免疫肿瘤学中细胞类型去卷积的大规模肿瘤微环境空间转录组数据集。

SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.

机构信息

Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA.

Boston University, Boston, Massachusetts, USA.

出版信息

J Comput Biol. 2024 Sep;31(9):871-885. doi: 10.1089/cmb.2024.0532. Epub 2024 Aug 8.

Abstract

Recent technological advancements have enabled spatially resolved transcriptomic profiling but at a multicellular resolution that is more cost-effective. The task of cell type deconvolution has been introduced to disentangle discrete cell types from such multicellular spots. However, existing benchmark datasets for cell type deconvolution are either generated from simulation or limited in scale, predominantly encompassing data on mice and are not designed for human immuno-oncology. To overcome these limitations and promote comprehensive investigation of cell type deconvolution for human immuno-oncology, we introduce a large-scale spatial transcriptomic deconvolution benchmark dataset named SpatialCTD, encompassing 1.8 million cells and 12,900 pseudo spots from the human tumor microenvironment across the lung, kidney, and liver. In addition, SpatialCTD provides more realistic reference than those generated from single-cell RNA sequencing (scRNA-seq) data for most reference-based deconvolution methods. To utilize the location-aware SpatialCTD reference, we propose a graph neural network-based deconvolution method (i.e., GNNDeconvolver). Extensive experiments show that GNNDeconvolver often outperforms existing state-of-the-art methods by a substantial margin, without requiring scRNA-seq data. To enable comprehensive evaluations of spatial transcriptomics data from flexible protocols, we provide an online tool capable of converting spatial transcriptomic data from various platforms (e.g., 10× Visium, MERFISH, and sci-Space) into pseudo spots, featuring adjustable spot size. The SpatialCTD dataset and GNNDeconvolver implementation are available at https://github.com/OmicsML/SpatialCTD, and the online converter tool can be accessed at https://omicsml.github.io/SpatialCTD/.

摘要

最近的技术进步使得能够进行空间分辨转录组谱分析,但成本效益更高的是在多细胞分辨率下进行。细胞类型去卷积的任务是将离散的细胞类型从这些多细胞点中分离出来。然而,现有的细胞类型去卷积基准数据集要么是通过模拟生成的,要么规模有限,主要包含关于小鼠的数据,并且不是为人类免疫肿瘤学设计的。为了克服这些限制,促进人类免疫肿瘤学中细胞类型去卷积的全面研究,我们引入了一个名为 SpatialCTD 的大规模空间转录组去卷积基准数据集,其中包含来自肺、肾和肝的人类肿瘤微环境的 180 万个细胞和 12900 个拟似斑点。此外,SpatialCTD 为大多数基于参考的去卷积方法提供了比基于单细胞 RNA 测序 (scRNA-seq) 数据生成的更真实的参考。为了利用位置感知的 SpatialCTD 参考,我们提出了一种基于图神经网络的去卷积方法(即 GNNDeconvolver)。广泛的实验表明,GNNDeconvolver 通常可以在不需要 scRNA-seq 数据的情况下,以相当大的优势超过现有的最先进方法。为了能够对灵活方案的空间转录组数据进行全面评估,我们提供了一个在线工具,能够将来自各种平台(例如 10× Visium、MERFISH 和 sci-Space)的空间转录组数据转换为拟似斑点,并具有可调节的斑点大小。SpatialCTD 数据集和 GNNDeconvolver 的实现可在 https://github.com/OmicsML/SpatialCTD 上获得,在线转换器工具可在 https://omicsml.github.io/SpatialCTD/ 上访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验