Nguyen Nam H, Dodd-Eaton Elissa B, Peng Gang, Corredor Jessica L, Jiao Wenwei, Woodman-Ross Jacynda, Arun Banu K, Wang Wenyi
Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX.
Department of Statistics, Rice University, Houston, TX.
medRxiv. 2023 Aug 15:2023.08.11.23293956. doi: 10.1101/2023.08.11.23293956.
LFSPRO is an R library that implements risk prediction models for Li-Fraumeni syndrome (LFS), a genetic disorder characterized by deleterious germline mutations in the gene. To facilitate the use of these models in clinics, we developed LFSPROShiny, an interactive R/Shiny interface of LFSPRO that allows genetic counselors (GCs) to perform risk predictions without any programming components, and further visualize the risk profiles of their patients to aid the decision-making process.
LFSPROShiny implements two models that have been validated on multiple LFS patient cohorts: a competing-risk model that predicts cancer-specific risks for the first primary, and a recurrent-event model that predicts the risk of a second primary tumor. Starting with a visualization template, we keep regular contact with GCs, who ran LFSPROShiny in their counseling sessions, to collect feedback and discuss potential improvement. Upon receiving the family history as input, LFSPROShiny renders the family into a pedigree, and displays the risk estimates of the family members in a tabular format. The software offers interactive overlaid side-by-side bar charts for visualization of the patients' cancer risks relative to the general population.
We walk through a detailed example to illustrate how GCs can run LFSPROShiny in clinics, from data preparation to downstream analyses and interpretation of results with an emphasis on the utilities that LFSPROShiny provides to aid decision making.
Since Dec 2021, we have applied LFSPROShiny to over 100 families from counseling sessions at MD Anderson Cancer Center. Our study suggests that software tools with easy-to-use interfaces are crucial for the dissemination of risk prediction models in clinical settings, hence serving as a guideline for future development of similar models.
LFSPRO是一个R语言库,用于实现李-弗劳梅尼综合征(LFS)的风险预测模型,LFS是一种遗传性疾病,其特征是该基因存在有害的种系突变。为便于在临床中使用这些模型,我们开发了LFSPROShiny,它是LFSPRO的交互式R/Shiny界面,使遗传咨询师(GC)无需任何编程组件即可进行风险预测,并进一步可视化其患者的风险概况,以辅助决策过程。
LFSPROShiny实现了两个已在多个LFS患者队列中得到验证的模型:一个竞争风险模型,用于预测首次原发性癌症的特定癌症风险;一个复发事件模型,用于预测第二次原发性肿瘤的风险。从一个可视化模板开始,我们与在咨询会议中运行LFSPROShiny的GC保持定期联系,以收集反馈并讨论潜在的改进。在接收到家族史作为输入后,LFSPROShiny将家族呈现为一个谱系,并以表格形式显示家庭成员的风险估计值。该软件提供交互式并排叠加柱状图,以可视化患者相对于一般人群的癌症风险。
我们通过一个详细的例子来说明GC如何在临床中运行LFSPROShiny,从数据准备到下游分析以及结果解释,重点强调LFSPROShiny为辅助决策提供的实用功能。
自2021年12月以来,我们已将LFSPROShiny应用于MD安德森癌症中心咨询会议的100多个家庭。我们的研究表明,具有易于使用界面的软件工具对于在临床环境中传播风险预测模型至关重要,因此可为未来类似模型的开发提供指导。