Muthukumar Gayathri, Stevens Taylor A, Inglis Alison J, Esantsi Theodore K, Saunders Reuben A, Schulte Fabian, Voorhees Rebecca M, Guna Alina, Weissman Jonathan S
Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
bioRxiv. 2023 Aug 17:2023.08.16.553624. doi: 10.1101/2023.08.16.553624.
Mitochondrial outer membrane α-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse substrates remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse α-helical substrates reveals that these components are organized into distinct targeting pathways which act on substrates based on their topology. NAC is required for efficient targeting of polytopic proteins whereas signal-anchored proteins require TTC1, a novel cytosolic chaperone which physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
线粒体外膜α螺旋蛋白在线粒体与细胞质的通讯中发挥着关键作用,但这些生物物理性质多样的底物的靶向和插入规则仍不清楚。在这里,我们首先通过使用拓扑结构不同的膜蛋白进行全基因组CRISPR干扰筛选,确定了所需的哺乳动物生物发生机制的组成部分。对21种不同α螺旋底物上九个已鉴定因子的系统分析表明,这些组分被组织成不同的靶向途径,根据底物的拓扑结构作用于底物。多结构域蛋白的有效靶向需要NAC,而信号锚定蛋白则需要TTC1,一种与底物直接结合的新型胞质伴侣蛋白。生化和突变研究表明,TTC1利用其保守的TPR结构域和C末端结构域中的疏水凹槽来支持底物的溶解和插入线粒体。因此,通过类似于内质网(ER)膜蛋白生物发生系统的原理在细胞质中进行拓扑分类,实现了对多种线粒体膜蛋白的靶向。