Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.
Mol Cell. 2024 Mar 21;84(6):1101-1119.e9. doi: 10.1016/j.molcel.2024.01.028. Epub 2024 Feb 29.
Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
线粒体外膜 ⍺-螺旋蛋白在细胞间线粒体通讯中发挥着关键作用,但这些具有不同物理特性的蛋白质的靶向和插入规则仍不清楚。在这里,我们首先通过使用拓扑上不同的膜蛋白的全基因组 CRISPRi 筛选,定义了所需的哺乳动物生物发生机制的成分。对 21 种不同 ⍺-螺旋底物中的 9 个鉴定因子进行系统分析表明,这些成分被组织成不同的靶向途径,根据它们的拓扑结构作用于底物。NAC 是多跨蛋白有效靶向所必需的,而信号锚定蛋白需要 TTC1,TTC1 是一种胞质伴侣,可与底物物理结合。生化和突变研究表明,TTC1 利用其 C 端结构域中的保守 TPR 结构域和疏水性凹槽来支持底物的溶解和插入线粒体。因此,通过使用与内质网膜蛋白生物发生系统相似的原则在细胞质中进行拓扑分类,实现了不同的线粒体膜蛋白的靶向。