Suppr超能文献

一种具有转录控制计算与可塑性的混合晶体管。

A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity.

作者信息

Gao Yang, Zhou Yuchen, Ji Xudong, Graham Austin J, Dundas Christopher M, Mahfoud Ismar E Miniel, Tibbett Bailey M, Tan Benjamin, Partipilo Gina, Dodabalapur Ananth, Rivnay Jonathan, Keitz Benjamin K

机构信息

McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

bioRxiv. 2023 Aug 18:2023.08.16.553547. doi: 10.1101/2023.08.16.553547.

Abstract

Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacterium that enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) from . Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements.

摘要

有机电化学晶体管(OECTs)是将生物信号转化为电信号输出的理想器件,在生物电子学、生物传感和神经形态计算等领域有应用。尽管它们具有潜力,但开发用于生命系统与OECTs接口的可编程和模块化方法已被证明具有挑战性。在这里,我们描述了包含模型电活性细菌的混合OECTs,其能够将生物计算转化为电响应。具体而言,我们制造了平面p型OECTs,并证明通道去掺杂是由来自[具体细菌名称未给出]的细胞外电子转移(EET)驱动的。利用这种机理理解以及我们通过转录调控控制EET通量的能力,我们使用基于质粒的布尔逻辑门将生物计算转化为OECT内的电流变化。最后,我们展示了EET驱动的OECT突触可塑性变化。这项工作推动了基础EET研究以及基于OECT的具有基因可控和模块化设计元件的生物传感和生物计算系统的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef0f/10462107/a0bd6b8711a3/nihpp-2023.08.16.553547v1-f0006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验