Méhes Gábor, Roy Arghyamalya, Strakosas Xenofon, Berggren Magnus, Stavrinidou Eleni, Simon Daniel T
Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 60174 Sweden.
Wallenberg Wood Science Center Department of Science and Technology Linköping University Norrköping 60174 Sweden.
Adv Sci (Weinh). 2020 Jun 9;7(15):2000641. doi: 10.1002/advs.202000641. eCollection 2020 Aug.
Extracellular electron transfer (EET) denotes the process of microbial respiration with electron transfer to extracellular acceptors and has been exploited in a range of microbial electrochemical systems (MESs). To further understand EET and to optimize the performance of MESs, a better understanding of the dynamics at the microscale is needed. However, the real-time monitoring of EET at high spatiotemporal resolution would require sophisticated signal amplification. To amplify local EET signals, a miniaturized bioelectronic device, the so-called organic microbial electrochemical transistor (OMECT), is developed, which includes MR-1 integrated onto organic electrochemical transistors comprising poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) combined with poly(vinyl alcohol) (PVA). Bacteria are attached to the gate of the transistor by a chronoamperometric method and the successful attachment is confirmed by fluorescence microscopy. Monitoring EET with the OMECT configuration is achieved due to the inherent amplification of the transistor, revealing fast time-responses to lactate. The limits of detection when using microfabricated gates as charge collectors are also investigated. The work is a first step toward understanding and monitoring EET in highly confined spaces via microfabricated organic electronic devices, and it can be of importance to study exoelectrogens in microenvironments, such as those of the human microbiome.
细胞外电子转移(EET)指的是微生物呼吸过程中电子向细胞外受体转移的过程,并且已经在一系列微生物电化学系统(MESs)中得到应用。为了进一步了解EET并优化MESs的性能,需要更好地理解微观尺度上的动力学。然而,要以高时空分辨率对EET进行实时监测,就需要复杂的信号放大技术。为了放大局部EET信号,开发了一种小型化生物电子器件,即所谓的有机微生物电化学晶体管(OMECT),它包括整合到由聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)与聚乙烯醇(PVA)组成的有机电化学晶体管上的MR-1。通过计时电流法将细菌附着在晶体管的栅极上,并通过荧光显微镜确认成功附着。利用OMECT配置监测EET是由于晶体管固有的放大作用,揭示了对乳酸的快速时间响应。还研究了使用微加工栅极作为电荷收集器时的检测限。这项工作是通过微加工有机电子器件在高度受限空间中理解和监测EET的第一步,对于研究微环境中的外生电菌,如人类微生物组中的外生电菌,可能具有重要意义。