Suppr超能文献

利用集成小角中子散射和计算技术对无规卷曲蛋白复合物进行结构特征分析

Structural characterization of an intrinsically disordered protein complex using integrated small-angle neutron scattering and computing.

机构信息

Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

出版信息

Protein Sci. 2023 Oct;32(10):e4772. doi: 10.1002/pro.4772.

Abstract

Characterizing structural ensembles of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins is essential for studying structure-function relationships. Due to the different neutron scattering lengths of hydrogen and deuterium, selective labeling and contrast matching in small-angle neutron scattering (SANS) becomes an effective tool to study dynamic structures of disordered systems. However, experimental timescales typically capture measurements averaged over multiple conformations, leaving complex SANS data for disentanglement. We hereby demonstrate an integrated method to elucidate the structural ensemble of a complex formed by two IDRs. We use data from both full contrast and contrast matching with residue-specific deuterium labeling SANS experiments, microsecond all-atom molecular dynamics (MD) simulations with four molecular mechanics force fields, and an autoencoder-based deep learning (DL) algorithm. From our combined approach, we show that selective deuteration provides additional information that helps characterize structural ensembles. We find that among the four force fields, a99SB-disp and CHARMM36m show the strongest agreement with SANS and NMR experiments. In addition, our DL algorithm not only complements conventional structural analysis methods but also successfully differentiates NMR and MD structures which are indistinguishable on the free energy surface. Lastly, we present an ensemble that describes experimental SANS and NMR data better than MD ensembles generated by one single force field and reveal three clusters of distinct conformations. Our results demonstrate a new integrated approach for characterizing structural ensembles of IDPs.

摘要

对蛋白质的无规则卷曲结构(IDPs)和无规则卷曲区域(IDRs)进行结构特征分析,对于研究结构-功能关系至关重要。由于氢和氘的中子散射长度不同,因此在小角中子散射(SANS)中进行选择性标记和对比匹配成为研究无规系统动态结构的有效工具。然而,实验时间尺度通常会捕捉到多个构象的平均测量值,从而导致复杂的 SANS 数据难以解析。我们在此展示了一种综合方法,用于阐明由两个 IDR 形成的复杂体系的结构特征。我们使用了来自全对比和对比匹配的实验数据,包括残基特异性氘标记 SANS 实验、使用四个分子力学力场的微秒全原子分子动力学(MD)模拟,以及基于自动编码器的深度学习(DL)算法。通过我们的综合方法,我们表明选择性氘化提供了有助于描述结构特征的附加信息。我们发现,在四个力场中,a99SB-disp 和 CHARMM36m 与 SANS 和 NMR 实验的一致性最强。此外,我们的 DL 算法不仅补充了传统的结构分析方法,还成功地区分了在自由能表面上无法区分的 NMR 和 MD 结构。最后,我们提出了一个能够更好地描述实验 SANS 和 NMR 数据的集合,优于由单个力场生成的 MD 集合,并揭示了三个具有不同构象的簇。我们的研究结果展示了一种用于分析 IDPs 结构特征的新的综合方法。

相似文献

本文引用的文献

1
Explore Protein Conformational Space With Variational Autoencoder.使用变分自编码器探索蛋白质构象空间。
Front Mol Biosci. 2021 Nov 12;8:781635. doi: 10.3389/fmolb.2021.781635. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验