Suppr超能文献

可扩展的偶极子里德堡原子阵列中的自旋压缩。

Scalable spin squeezing in a dipolar Rydberg atom array.

机构信息

Charles Fabry Laboratory University of Paris-Saclay, Institute of Optics Graduate School, CNRS, Palaiseau Cedex, France.

Department of Physics, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2023 Sep;621(7980):728-733. doi: 10.1038/s41586-023-06414-9. Epub 2023 Aug 30.

Abstract

The standard quantum limit bounds the precision of measurements that can be achieved by ensembles of uncorrelated particles. Fundamentally, this limit arises from the non-commuting nature of quantum mechanics, leading to the presence of fluctuations often referred to as quantum projection noise. Quantum metrology relies on the use of non-classical states of many-body systems to enhance the precision of measurements beyond the standard quantum limit. To do so, one can reshape the quantum projection noise-a strategy known as squeezing. In the context of many-body spin systems, one typically uses all-to-all interactions (for example, the one-axis twisting model) between the constituents to generate the structured entanglement characteristic of spin squeezing. Here we explore the prediction, motivated by recent theoretical work, that short-range interactions-and in particular, the two-dimensional dipolar XY model-can also enable the realization of scalable spin squeezing. Working with a dipolar Rydberg quantum simulator of up to N = 100 atoms, we demonstrate that quench dynamics from a polarized initial state lead to spin squeezing that improves with increasing system size up to a maximum of -3.5 ± 0.3 dB (before correcting for detection errors, or roughly -5 ± 0.3 dB after correction). Finally, we present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by roughly 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions, we demonstrate the ability to extend the lifetime of the squeezed state by freezing its dynamics.

摘要

标准量子极限限制了可以通过非关联粒子的集合实现的测量精度。从根本上讲,这种限制源于量子力学的非交换性质,导致出现通常被称为量子投影噪声的波动。量子计量学依赖于使用多体系统的非经典态来提高测量精度,超越标准量子极限。为此,可以重塑量子投影噪声 - 一种称为压缩的策略。在多体自旋系统的背景下,通常使用组成部分之间的全对全相互作用(例如,单轴扭转模型)来产生自旋压缩的结构化纠缠。在这里,我们根据最近的理论工作预测,短程相互作用 - 特别是二维偶极 XY 模型 - 也可以实现可扩展的自旋压缩。我们使用多达 N = 100 个原子的偶极子里德堡量子模拟器进行工作,证明从极化初始状态的淬火动力学导致自旋压缩,随着系统尺寸的增加而增加,最大可达-3.5±0.3dB(在不考虑检测误差的情况下,或者在经过校正后大约为-5±0.3dB)。最后,我们提出了两个独立的改进:首先,使用多步压缩协议可以进一步提高压缩度约 1dB,其次,利用弗洛奎特工程实现海森堡相互作用,我们展示了通过冻结动力学来延长压缩态寿命的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验