JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA.
Nature. 2023 Sep;621(7980):734-739. doi: 10.1038/s41586-023-06360-6. Epub 2023 Aug 30.
Neutral-atom arrays trapped in optical potentials are a powerful platform for studying quantum physics, combining precise single-particle control and detection with a range of tunable entangling interactions. For example, these capabilities have been leveraged for state-of-the-art frequency metrology as well as microscopic studies of entangled many-particle states. Here we combine these applications to realize spin squeezing-a widely studied operation for producing metrologically useful entanglement-in an optical atomic clock based on a programmable array of interacting optical qubits. In this demonstration of Rydberg-mediated squeezing with a neutral-atom optical clock, we generate states that have almost four decibels of metrological gain. In addition, we perform a synchronous frequency comparison between independent squeezed states and observe a fractional-frequency stability of 1.087(1) × 10 at one-second averaging time, which is 1.94(1) decibels below the standard quantum limit and reaches a fractional precision at the 10 level during a half-hour measurement. We further leverage the programmable control afforded by optical tweezer arrays to apply local phase shifts to explore spin squeezing in measurements that operate beyond the relative coherence time with the optical local oscillator. The realization of this spin-squeezing protocol in a programmable atom-array clock will enable a wide range of quantum-information-inspired techniques for optimal phase estimation and Heisenberg-limited optical atomic clocks.
中性原子阵列被困在光势中,是研究量子物理的强大平台,它将精确的单粒子控制和探测与一系列可调谐的纠缠相互作用结合在一起。例如,这些能力已经被用于最先进的频率计量学,以及纠缠多粒子态的微观研究。在这里,我们结合这些应用,在基于可编程相互作用光学量子比特阵列的光学原子钟中实现了自旋压缩——这是一种广泛研究的产生具有计量学用途的纠缠的操作。在这个使用中性原子光学钟实现里德堡介导压缩的演示中,我们生成了具有几乎 4 分贝计量增益的状态。此外,我们在独立的压缩态之间进行了同步频率比较,并在一秒的平均时间内观察到 1.087(1)×10 的分数频率稳定性,这比标准量子极限低 1.94(1)分贝,在半小时的测量中达到了 10 分位的分数精度。我们进一步利用光镊子阵列提供的可编程控制,施加局部相移,以探索在与光学本地振荡器的相对相干时间之外进行的测量中的自旋压缩。在可编程原子阵列时钟中实现这种自旋压缩协议,将为最佳相位估计和海森堡极限光学原子钟等一系列基于量子信息的技术提供支持。