Davis Emily, Bentsen Gregory, Schleier-Smith Monika
Department of Physics, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2016 Feb 5;116(5):053601. doi: 10.1103/PhysRevLett.116.053601. Epub 2016 Feb 2.
We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the "one-axis twisting" interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Applying this interaction-based readout to oversqueezed, non-Gaussian states yields a Heisenberg scaling in phase sensitivity, which persists in the presence of detection noise as large as the quantum projection noise of an unentangled ensemble. Even in dissipative implementations-e.g., employing light-mediated interactions in an optical cavity or Rydberg dressing-the method significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit.
我们提出了一种量子相位估计方法,该方法无需单粒子分辨态检测就能达到接近海森堡极限的精度。我们表明,以在原子系综中产生自旋压缩而闻名的“单轴扭转”相互作用,也可以放大纠缠增强干涉仪的输出信号以利于读出。将这种基于相互作用的读出应用于过压缩的非高斯态,可在相位灵敏度上产生海森堡标度,即使存在与非纠缠系综的量子投影噪声一样大的检测噪声,该标度依然存在。即使在耗散实现中,例如在光学腔中采用光介导相互作用或里德堡缀饰,该方法也能显著放宽超越标准量子极限的光谱学所需的检测分辨率。