文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超越抗 PD-1/PD-L1 时代:BTLA/HVEM 轴作为癌症免疫治疗未来靶点的前景。

Beyond the anti-PD-1/PD-L1 era: promising role of the BTLA/HVEM axis as a future target for cancer immunotherapy.

机构信息

Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.

Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.

出版信息

Mol Cancer. 2023 Aug 30;22(1):142. doi: 10.1186/s12943-023-01845-4.


DOI:10.1186/s12943-023-01845-4
PMID:37649037
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10466776/
Abstract

Recent introduction of monoclonal antibodies targeting immune checkpoints to harness antitumor immunity has revolutionized the cancer treatment landscape. The therapeutic success of immune checkpoint blockade (ICB)-based therapies mainly relies on PD-1/PD-L1 and CTLA-4 blockade. However, the limited overall responses and lack of reliable predictive biomarkers of patient´s response are major pitfalls limiting immunotherapy success. Hence, this reflects the compelling need of unveiling novel targets for immunotherapy that allow to expand the spectrum of ICB-based strategies to achieve optimal therapeutic efficacy and benefit for cancer patients. This review thoroughly dissects current molecular and functional knowledge of BTLA/HVEM axis and the future perspectives to become a target for cancer immunotherapy. BTLA/HVEM dysregulation is commonly found and linked to poor prognosis in solid and hematological malignancies. Moreover, circulating BTLA has been revealed as a blood-based predictive biomarker of immunotherapy response in various cancers. On this basis, BTLA/HVEM axis emerges as a novel promising target for cancer immunotherapy. This prompted rapid development and clinical testing of the anti-BTLA blocking antibody Tifcemalimab/icatolimab as the first BTLA-targeted therapy in various ongoing phase I clinical trials with encouraging results on preliminary efficacy and safety profile as monotherapy and combined with other anti-PD-1/PD-L1 therapies. Nevertheless, it is anticipated that the intricate signaling network constituted by BTLA/HVEM/CD160/LIGHT involved in immune response regulation, tumor development and tumor microenvironment could limit therapeutic success. Therefore, in-depth functional characterization in different cancer settings is highly recommended for adequate design and implementation of BTLA-targeted therapies to guarantee the best clinical outcomes to benefit cancer patients.

摘要

近年来,靶向免疫检查点的单克隆抗体的引入,利用了抗肿瘤免疫,彻底改变了癌症治疗领域。免疫检查点阻断(ICB)为基础的治疗的治疗成功主要依赖于 PD-1/PD-L1 和 CTLA-4 阻断。然而,患者反应的总体反应有限和缺乏可靠的预测生物标志物是限制免疫治疗成功的主要缺陷。因此,这反映了迫切需要为免疫治疗揭示新的靶点,以使基于 ICB 的策略的范围扩大,以实现癌症患者的最佳治疗效果和获益。本综述全面剖析了 BTLA/HVEM 轴的当前分子和功能知识,以及未来成为癌症免疫治疗靶点的前景。BTLA/HVEM 的失调在实体瘤和血液恶性肿瘤中常见,与预后不良有关。此外,循环 BTLA 已被揭示为各种癌症中免疫治疗反应的基于血液的预测生物标志物。在此基础上,BTLA/HVEM 轴成为癌症免疫治疗的一个新的有前途的靶点。这促使了抗 BTLA 阻断抗体 Tifcemalimab/icatolimab 的快速开发和临床试验,作为第一种针对 BTLA 的治疗方法,在各种正在进行的 I 期临床试验中取得了令人鼓舞的初步疗效和安全性,作为单一疗法和联合其他抗 PD-1/PD-L1 疗法。然而,预计 BTLA/HVEM/CD160/LIGHT 构成的复杂信号网络在免疫反应调节、肿瘤发展和肿瘤微环境中涉及,可能会限制治疗成功。因此,强烈建议在不同的癌症环境中进行深入的功能特征分析,以充分设计和实施 BTLA 靶向治疗,保证最佳的临床结果,使癌症患者受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/534538cd33fa/12943_2023_1845_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/e4ff9787a376/12943_2023_1845_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/150e07dbb577/12943_2023_1845_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/d423743d6c37/12943_2023_1845_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/534538cd33fa/12943_2023_1845_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/e4ff9787a376/12943_2023_1845_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/150e07dbb577/12943_2023_1845_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/d423743d6c37/12943_2023_1845_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03d/10466776/534538cd33fa/12943_2023_1845_Fig4_HTML.jpg

相似文献

[1]
Beyond the anti-PD-1/PD-L1 era: promising role of the BTLA/HVEM axis as a future target for cancer immunotherapy.

Mol Cancer. 2023-8-30

[2]
Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity.

Adv Exp Med Biol. 2021

[3]
Distinct characteristics of BTLA/HVEM axis expression on Tregs and its impact on the expansion and attributes of Tregs in patients with active pulmonary tuberculosis.

Front Cell Infect Microbiol. 2024

[4]
Fragments of gD Protein as Inhibitors of BTLA/HVEM Complex Formation-Design, Synthesis, and Cellular Studies.

Int J Mol Sci. 2020-11-23

[5]
Anti-HVEM mAb therapy improves antitumoral immunity both in vitro and in vivo, in a novel transgenic mouse model expressing human HVEM and BTLA molecules challenged with HVEM expressing tumors.

J Immunother Cancer. 2023-5

[6]
BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia.

Cancers (Basel). 2021-4-7

[7]
A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.

Eur Urol. 2015-3-29

[8]
BTLA-HVEM Couple in Health and Diseases: Insights for Immunotherapy in Lung Cancer.

Front Oncol. 2021-8-31

[9]
The BTLA-HVEM complex - The future of cancer immunotherapy.

Eur J Med Chem. 2024-3-15

[10]
The Immune Checkpoint BTLA in Oral Cancer: Expression Analysis and Its Correlation to Other Immune Modulators.

Int J Mol Sci. 2024-6-15

引用本文的文献

[1]
The role of tumor necrosis factor receptor superfamily in cancer: insights into oncogenesis, progression, and therapeutic strategies.

NPJ Precis Oncol. 2025-8-6

[2]
Meta_B cells: a computationally identified candidate immunosuppressive driver of gastric cancer metastasis revealed by single-cell analysis and machine learning.

Discov Oncol. 2025-8-6

[3]
Pan-Cancer Landscape of B- and T-Lymphocyte Attenuator: Implications for Potential Immunotherapy Combinations.

JCO Precis Oncol. 2025-8

[4]
The predictive value of the neutrophil/eosinophil ratio in cancer patients undergoing immune checkpoint inhibition: a meta-analysis and a validation cohort in hepatocellular carcinoma.

Front Immunol. 2025-7-21

[5]
Rationale of using immune checkpoint inhibitors (ICIs) and anti-angiogenic agents in cancer treatment from a molecular perspective.

Clin Exp Med. 2025-7-8

[6]
Pan-cancer analysis reveals the potential role of DHCR24 in bladder cancer via interactions with HRAS to facilitate cholesterol synthesis.

Oncol Lett. 2025-6-5

[7]
Single-cell transcriptomics and machine learning unveil ferroptosis features in tumor-associated macrophages: Prognostic model and therapeutic strategies for lung adenocarcinoma.

Front Pharmacol. 2025-5-12

[8]
Nanomaterial assisted natural killer cell therapy.

Front Immunol. 2025-5-5

[9]
PITX1 as a grading, prognostic and tumor-infiltrating immune cells marker for chondrosarcoma: a public database-based immunoassay and tissue sample analysis.

Front Oncol. 2025-4-11

[10]
Perioperative the BTLA inhibitor (tifcemalimab) combined with toripalimab and chemotherapy for resectable locally advanced thoracic esophageal squamous cell carcinoma trial (BT-NICE trial): a prospective, single-arm, exploratory study.

Front Immunol. 2025-4-10

本文引用的文献

[1]
Retroviral b-Zip protein (HBZ) contributes to the release of soluble and exosomal immune checkpoint molecules in the context of neuroinflammation.

J Extracell Biol. 2023-7

[2]
BTLA dysregulation correlates with poor outcome and diminished T cell-mediated antitumor responses in chronic lymphocytic leukemia.

Cancer Immunol Immunother. 2023-7

[3]
Neoadjuvant relatlimab and nivolumab in resectable melanoma.

Nature. 2022-11

[4]
Unravelling soluble immune checkpoints in chronic lymphocytic leukemia: Physiological immunomodulators or immune dysfunction.

Front Immunol. 2022

[5]
Can circulating PD-1, PD-L1, BTN3A1, pan-BTN3As, BTN2A1 and BTLA levels enhance prognostic power of CA125 in patients with advanced high-grade serous ovarian cancer?

Front Oncol. 2022-9-21

[6]
BND-22, a first-in-class humanized ILT2-blocking antibody, promotes antitumor immunity and tumor regression.

J Immunother Cancer. 2022-9

[7]
BTLA inhibition has a dominant role in the -complex of BTLA and HVEM.

Front Immunol. 2022

[8]
The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases.

Cell Immunol. 2022-6

[9]
Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma.

N Engl J Med. 2022-1-6

[10]
Checkpoint blockade: the end of the beginning.

Nat Rev Immunol. 2021-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索