文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结合 bulk 和单细胞 RNA-seq 数据,基于集成机器学习框架开发用于肝细胞癌的 NK 细胞相关预后特征。

Combining bulk and single-cell RNA-sequencing data to develop an NK cell-related prognostic signature for hepatocellular carcinoma based on an integrated machine learning framework.

机构信息

Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.

Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.

出版信息

Eur J Med Res. 2023 Aug 30;28(1):306. doi: 10.1186/s40001-023-01300-6.


DOI:10.1186/s40001-023-01300-6
PMID:37649103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10466881/
Abstract

BACKGROUND: The application of molecular targeting therapy and immunotherapy has notably prolonged the survival of patients with hepatocellular carcinoma (HCC). However, multidrug resistance and high molecular heterogeneity of HCC still prevent the further improvement of clinical benefits. Dysfunction of tumor-infiltrating natural killer (NK) cells was strongly related to HCC progression and survival benefits of HCC patients. Hence, an NK cell-related prognostic signature was built up to predict HCC patients' prognosis and immunotherapeutic response. METHODS: NK cell markers were selected from scRNA-Seq data obtained from GSE162616 data set. A consensus machine learning framework including a total of 77 algorithms was developed to establish the gene signature in TCGA-LIHC data set, GSE14520 data set, GSE76427 data set and ICGC-LIRI-JP data set. Moreover, the predictive efficacy on ICI response was externally validated by GSE91061 data set and PRJEB23709 data set. RESULTS: With the highest C-index among 77 algorithms, a 11-gene signature was established by the combination of LASSO and CoxBoost algorithm, which classified patients into high- and low-risk group. The prognostic signature displayed a good predictive performance for overall survival rate, moderate to high predictive accuracy and was an independent risk factor for HCC patients' prognosis in TCGA, GEO and ICGC cohorts. Compared with high-risk group, low-risk patients showed higher IPS-PD1 blocker, IPS-CTLA4 blocker, common immune checkpoints expression but lower TIDE score, which indicated low-risk patients might be prone to benefiting from ICI treatment. Moreover, a real-world cohort, PRJEB23709, also revealed better immunotherapeutic response in low-risk group. CONCLUSIONS: Overall, the present study developed a gene signature based on NK cell-related genes, which offered a novel platform for prognosis and immunotherapeutic response evaluation of HCC patients.

摘要

背景:分子靶向治疗和免疫治疗的应用显著延长了肝细胞癌(HCC)患者的生存时间。然而,HCC 的多药耐药性和高分子异质性仍然阻碍了临床获益的进一步提高。肿瘤浸润自然杀伤(NK)细胞功能障碍与 HCC 进展和 HCC 患者的生存获益密切相关。因此,构建了一个与 NK 细胞相关的预后标志物,以预测 HCC 患者的预后和免疫治疗反应。

方法:从 GSE162616 数据集的 scRNA-Seq 数据中选择 NK 细胞标志物。开发了一个共识机器学习框架,包括总共 77 种算法,以在 TCGA-LIHC 数据集、GSE14520 数据集、GSE76427 数据集和 ICGC-LIRI-JP 数据集中建立基因特征。此外,通过 GSE91061 数据集和 PRJEB23709 数据集对 ICI 反应的预测效果进行了外部验证。

结果:通过 LASSO 和 CoxBoost 算法的组合,在 77 种算法中具有最高的 C 指数,建立了一个由 11 个基因组成的标志物,将患者分为高风险和低风险组。该预后标志物在 TCGA、GEO 和 ICGC 队列中对总生存率具有良好的预测性能、中高度预测准确性,并且是 HCC 患者预后的独立危险因素。与高风险组相比,低风险组显示出更高的 IPS-PD1 阻滞剂、IPS-CTLA4 阻滞剂、常见免疫检查点表达,但更低的 TIDE 评分,这表明低风险组可能更容易受益于 ICI 治疗。此外,真实世界的 PRJEB23709 队列也显示低风险组的免疫治疗反应更好。

结论:总之,本研究基于 NK 细胞相关基因开发了一个基因标志物,为 HCC 患者的预后和免疫治疗反应评估提供了一个新的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/c0f03604513c/40001_2023_1300_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/10d88cce3fb6/40001_2023_1300_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/ba015d1660ac/40001_2023_1300_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/4422dd9445db/40001_2023_1300_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/aad0a3c8ce81/40001_2023_1300_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/2706f3379494/40001_2023_1300_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/c3f761f071ed/40001_2023_1300_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/6622ee73e487/40001_2023_1300_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/9dd019914389/40001_2023_1300_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/15d0ae63e550/40001_2023_1300_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/6a47ec50fffe/40001_2023_1300_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/c0503b47b8d8/40001_2023_1300_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/b2477bbd68d9/40001_2023_1300_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/c0f03604513c/40001_2023_1300_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/10d88cce3fb6/40001_2023_1300_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/ba015d1660ac/40001_2023_1300_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/4422dd9445db/40001_2023_1300_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/aad0a3c8ce81/40001_2023_1300_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/2706f3379494/40001_2023_1300_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/c3f761f071ed/40001_2023_1300_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/6622ee73e487/40001_2023_1300_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/9dd019914389/40001_2023_1300_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/15d0ae63e550/40001_2023_1300_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/6a47ec50fffe/40001_2023_1300_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/c0503b47b8d8/40001_2023_1300_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/b2477bbd68d9/40001_2023_1300_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/10466881/c0f03604513c/40001_2023_1300_Fig13_HTML.jpg

相似文献

[1]
Combining bulk and single-cell RNA-sequencing data to develop an NK cell-related prognostic signature for hepatocellular carcinoma based on an integrated machine learning framework.

Eur J Med Res. 2023-8-30

[2]
A novel natural killer-related signature to effectively predict prognosis in hepatocellular carcinoma.

BMC Med Genomics. 2023-9-6

[3]
A T-cell-related signature for prognostic stratification and immunotherapy response in hepatocellular carcinoma based on transcriptomics and single-cell sequencing.

BMC Bioinformatics. 2023-5-25

[4]
Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on NK cell marker genes to predict prognosis and immunotherapy response in hepatocellular carcinoma.

J Cancer Res Clin Oncol. 2023-9

[5]
T-cell exhaustion signatures characterize the immune landscape and predict HCC prognosis integrating single-cell RNA-seq and bulk RNA-sequencing.

Front Immunol. 2023

[6]
A Novel Prognostic Signature of comprising Nine NK Cell signatures Based on Both Bulk RNA Sequencing and Single-Cell RNA Sequencing for Hepatocellular Carcinoma.

J Cancer. 2023-7-16

[7]
Novel prognostic signature for hepatocellular carcinoma using a comprehensive machine learning framework to predict prognosis and guide treatment.

Front Immunol. 2024

[8]
Identification of cancer-associated fibroblasts signature for predicting the prognosis and immunotherapy response in hepatocellular carcinoma.

Medicine (Baltimore). 2023-11-10

[9]
Characterizing the key genes of COVID-19 that regulate tumor immune microenvironment and prognosis in hepatocellular carcinoma.

Funct Integr Genomics. 2023-8-4

[10]
Deciphering the immune heterogeneity dominated by natural killer cells with prognostic and therapeutic implications in hepatocellular carcinoma.

Comput Biol Med. 2023-5

引用本文的文献

[1]
Single-cell sequencing combined with bulk RNA seq reveals the roles of natural killer cell in prognosis and immunotherapy of hepatocellular carcinoma.

Sci Rep. 2025-5-1

[2]
Artificial intelligence networks for assessing the prognosis of gastrointestinal cancer to immunotherapy based on genetic mutation features: a systematic review and meta-analysis.

BMC Gastroenterol. 2025-4-29

[3]
Uncovering the heterogeneity of NK cells on the prognosis of HCC by integrating bulk and single-cell RNA-seq data.

Front Oncol. 2025-3-18

[4]
A comprehensive analysis to reveal the underlying molecular mechanisms of natural killer cell in thyroid carcinoma based on single-cell RNA sequencing data.

Discov Oncol. 2025-1-14

[5]
Habitat radiomics based on CT images to predict survival and immune status in hepatocellular carcinoma, a multi-cohort validation study.

Transl Oncol. 2025-2

[6]
Deep Immunoprofiling of Large-Scale Tuberculosis Dataset at Single Cell Resolution Reveals a CD81 γδ T Cell Population Associated with Latency.

Cells. 2024-9-12

[7]
Machine Learning-Based Assessment of Survival and Risk Factors in Non-Alcoholic Fatty Liver Disease-Related Hepatocellular Carcinoma for Optimized Patient Management.

Cancers (Basel). 2024-3-10

[8]
Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data Reveals Memory-like NK Cell Subset Associated with Latency.

Cells. 2024-2-6

本文引用的文献

[1]
Natural killer cell-related prognosis signature characterizes immune landscape and predicts prognosis of HNSCC.

Front Immunol. 2022

[2]
Artificial intelligence-driven consensus gene signatures for improving bladder cancer clinical outcomes identified by multi-center integration analysis.

Mol Oncol. 2022-12

[3]
Establishment and validation of a cholesterol metabolism-related prognostic signature for hepatocellular carcinoma.

Comput Struct Biotechnol J. 2022-8-1

[4]
Immunotherapy: Reshape the Tumor Immune Microenvironment.

Front Immunol. 2022

[5]
Panoramic comparison between NK cells in healthy and cancerous liver through single-cell RNA sequencing.

Cancer Biol Med. 2022-7-21

[6]
Identification and Validation of a Novel Signature Based on NK Cell Marker Genes to Predict Prognosis and Immunotherapy Response in Lung Adenocarcinoma by Integrated Analysis of Single-Cell and Bulk RNA-Sequencing.

Front Immunol. 2022

[7]
Emerging Therapies for Hepatocellular Carcinoma (HCC).

Cancers (Basel). 2022-6-4

[8]
Personalized treatment for hepatocellular carcinoma: Current status and future perspectives.

J Gastroenterol Hepatol. 2022-7

[9]
Natural killer cell-related gene signature predicts malignancy of glioma and the survival of patients.

BMC Cancer. 2022-3-2

[10]
ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1.

Nat Cancer. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索