School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
Small. 2023 Dec;19(52):e2304263. doi: 10.1002/smll.202304263. Epub 2023 Aug 30.
The asialoglycoprotein receptor (ASGPR) is expressed in high density on hepatocytes. Multivalent variants of galactosyl carbohydrates bind ASGPR with high affinity, enabling hepatic delivery of ligand-bound cargo. Virus-like particle (VLP) conjugates of a relatively high-affinity ligand were efficiently endocytosed by ASGPR-expressing cells in a manner strongly dependent on the nature and density of ligand display, with the best formulation using a nanomolar-, but not a picomolar-level, binder. Optimized particles were taken up by HepG2 cells with greater efficiency than competing small molecules or the natural multigalactosylated ligand, asialoorosomucoid. Upon systemic injection in mice, these VLPs were rapidly cleared to the liver and were found in association with sinusoidal endothelial cells, Kupffer cells, hepatocytes, dendritic cells, and other immune cells. Both ASGPR-targeted and nontargeted particles were distributed similarly to endothelial and Kupffer cells, but targeted particles were distributed to a greater number and fraction of hepatocytes. Thus, selective cellular trafficking in the liver is difficult to achieve: even with the most potent ASGPR targeting available, barrier cells take up much of the injected particles and hepatocytes are accessed only approximately twice as efficiently in the best case.
去唾液酸糖蛋白受体 (ASGPR) 在肝细胞上高表达。具有多价的半乳糖基碳水化合物与 ASGPR 具有高亲和力结合,使配体结合的货物能够递送到肝脏。相对高亲和力配体的病毒样颗粒 (VLP) 缀合物通过 ASGPR 表达细胞的内吞作用被有效摄取,这种内吞作用强烈依赖于配体展示的性质和密度,最佳配方使用纳摩尔级而不是皮摩尔级的结合剂。优化后的颗粒被 HepG2 细胞摄取的效率高于竞争的小分子或天然的多半乳糖基配体,即去唾液酸糖蛋白。在小鼠体内系统注射后,这些 VLP 迅速被清除到肝脏,并与窦状内皮细胞、枯否细胞、肝细胞、树突状细胞和其他免疫细胞相关联。靶向 ASGPR 的和非靶向的颗粒在分布上与内皮细胞和枯否细胞相似,但靶向的颗粒分布到更多数量和比例的肝细胞中。因此,在肝脏中实现选择性细胞转运是困难的:即使使用最有效的 ASGPR 靶向,屏障细胞也会摄取大量注射的颗粒,而在最佳情况下,只有大约两倍的肝细胞能够更有效地被摄取。