文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于胶质母细胞瘤放免联合治疗的淋巴结靶向佐剂/新抗原递呈疫苗。

Lymph node-targeting adjuvant/neoantigen-codelivering vaccines for combination glioblastoma radioimmunotherapy.

机构信息

Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; The Developmental Therapeutics Program, Massey Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA.

Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Theranostics. 2023 Aug 6;13(13):4304-4315. doi: 10.7150/thno.84443. eCollection 2023.


DOI:10.7150/thno.84443
PMID:37649594
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10465217/
Abstract

Glioblastoma multiforme (GBM) is the most common and lethal type of adult brain cancer. Current GBM standard of care, including radiotherapy, often ends up with cancer recurrence, resulting in limited long-term survival benefits for GBM patients. Immunotherapy, such as immune checkpoint blockade (ICB), has thus far shown limited clinical benefit for GBM patients. Therapeutic vaccines hold great potential to elicit anti-cancer adaptive immunity, which can be synergistically combined with ICB and radiotherapy. Peptide vaccines are attractive for their ease of manufacturing and stability, but their therapeutic efficacy has been limited due to poor vaccine co-delivery and the limited ability of monovalent antigen vaccines to prevent tumor immune evasion. To address these challenges, here, we report GBM radioimmunotherapy that combines radiotherapy, ICB, and multivalent lymph-node-targeting adjuvant/antigen-codelivering albumin-binding vaccines (AAco-AlbiVax). Specifically, to codeliver peptide neoantigens and adjuvant CpG to lymph nodes (LNs), we developed AAco-AlbiVax based on a Y-shaped DNA scaffold that was site-specifically conjugated with CpG, peptide neoantigens, and albumin-binding maleimide-modified Evans blue derivative (MEB). As a result, these vaccines elicited antitumor immunity including neoantigen-specific CD8 T cell responses in mice. In orthotopic GBM mice, the combination of AAco-AlbiVax, ICB, and fractionated radiation enhanced GBM therapeutic efficacy. However, radioimmunotherapy only trended more efficacious over radiotherapy alone. Taken together, these studies underscore the great potential of radioimmunotherapy for GBM, and future optimization of treatment dosing and scheduling would improve the therapeutic efficacy.

摘要

多形性胶质母细胞瘤(GBM)是最常见和致命的成人脑癌。目前的 GBM 标准治疗方法,包括放疗,往往最终导致癌症复发,导致 GBM 患者的长期生存获益有限。免疫疗法,如免疫检查点阻断(ICB),迄今为止对 GBM 患者的临床获益有限。治疗性疫苗具有引发抗癌适应性免疫的巨大潜力,可以与 ICB 和放疗协同结合。肽疫苗因其易于制造和稳定性而具有吸引力,但由于疫苗共递送和单价抗原疫苗预防肿瘤免疫逃逸的能力有限,其治疗效果受到限制。为了解决这些挑战,我们在这里报告了一种将放疗、ICB 和多价淋巴结靶向佐剂/抗原递呈白蛋白结合疫苗(AAco-AlbiVax)结合的 GBM 放射免疫治疗。具体来说,为了将肽新抗原和佐剂 CpG 共递送至淋巴结(LN),我们基于一种 Y 形 DNA 支架开发了 AAco-AlbiVax,该支架通过定点与 CpG、肽新抗原和白蛋白结合的马来酰亚胺修饰 Evans 蓝衍生物(MEB)进行共轭。结果,这些疫苗在小鼠中引发了抗肿瘤免疫,包括新抗原特异性 CD8 T 细胞反应。在原位 GBM 小鼠中,AAco-AlbiVax、ICB 和分割放疗的联合增强了 GBM 的治疗效果。然而,放射免疫治疗仅比单独放疗更有效。总之,这些研究强调了放射免疫治疗对 GBM 的巨大潜力,未来优化治疗剂量和方案将提高治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/e4deca0ff2ca/thnov13p4304g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/c3e5c63a8e13/thnov13p4304g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/31751bbb2620/thnov13p4304g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/318f301fb60d/thnov13p4304g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/320ee618d9a1/thnov13p4304g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/e4deca0ff2ca/thnov13p4304g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/c3e5c63a8e13/thnov13p4304g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/31751bbb2620/thnov13p4304g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/318f301fb60d/thnov13p4304g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/320ee618d9a1/thnov13p4304g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0015/10465217/e4deca0ff2ca/thnov13p4304g005.jpg

相似文献

[1]
Lymph node-targeting adjuvant/neoantigen-codelivering vaccines for combination glioblastoma radioimmunotherapy.

Theranostics. 2023

[2]
Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy.

Bioact Mater. 2023-8

[3]
Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy.

Adv Sci (Weinh). 2022-8

[4]
Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy.

Nat Commun. 2017-12-5

[5]
Treatment of an aggressive orthotopic murine glioblastoma model with combination checkpoint blockade and a multivalent neoantigen vaccine.

Neuro Oncol. 2020-9-29

[6]
A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.

ACS Nano. 2024-3-5

[7]
A Dendrimer Peptide (KK2DP7) Delivery System with Dual Functions of Lymph Node Targeting and Immune Adjuvants as a General Strategy for Cancer Immunotherapy.

Adv Sci (Weinh). 2023-5

[8]
TLR9 plus STING Agonist Adjuvant Combination Induces Potent Neopeptide T Cell Immunity and Improves Immune Checkpoint Blockade Efficacy in a Tumor Model.

J Immunol. 2024-2-1

[9]
Combination immunotherapy strategies for glioblastoma.

J Neurooncol. 2021-2

[10]
Neoantigen discovery and applications in glioblastoma: An immunotherapy perspective.

Cancer Lett. 2022-12-1

本文引用的文献

[1]
Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy.

Bioact Mater. 2023-8

[2]
Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy.

Adv Sci (Weinh). 2022-8

[3]
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them.

Br J Cancer. 2022-10

[4]
Considerations for personalized neoantigen vaccination in Malignant glioma.

Adv Drug Deliv Rev. 2022-7

[5]
Immunotherapy for Glioblastoma: Current Progress and Challenges.

Front Immunol. 2021

[6]
Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma.

Front Immunol. 2021

[7]
Immunotherapy for recurrent glioblastoma: practical insights and challenging prospects.

Cell Death Dis. 2021-3-19

[8]
Glioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy.

Front Oncol. 2020-12-8

[9]
Effects of oncolytic viruses and viral vectors on immunity in glioblastoma.

Gene Ther. 2022-4

[10]
Cytotoxic CD8 T cells in cancer and cancer immunotherapy.

Br J Cancer. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索