文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于共递送肽 neoantigens 和优化的 STING 和 TLR4 激动剂组合的癌症纳米疫苗。

A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.

出版信息

ACS Nano. 2024 Mar 5;18(9):6845-6862. doi: 10.1021/acsnano.3c04471. Epub 2024 Feb 22.


DOI:10.1021/acsnano.3c04471
PMID:38386282
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10919087/
Abstract

Immune checkpoint blockade (ICB) has revolutionized cancer treatment and led to complete and durable responses, but only for a minority of patients. Resistance to ICB can largely be attributed to insufficient number and/or function of antitumor CD8 T cells in the tumor microenvironment. Neoantigen targeted cancer vaccines can activate and expand the antitumor T cell repertoire, but historically, clinical responses have been poor because immunity against peptide antigens is typically weak, resulting in insufficient activation of CD8 cytotoxic T cells. Herein, we describe a nanoparticle vaccine platform that can overcome these barriers in several ways. First, the vaccine can be reproducibly formulated using a scalable confined impingement jet mixing method to coload a variety of physicochemically diverse peptide antigens and multiple vaccine adjuvants into pH-responsive, vesicular nanoparticles that are monodisperse and less than 100 nm in diameter. Using this approach, we encapsulated synergistically acting adjuvants, cGAMP and monophosphoryl lipid A (MPLA), into the nanocarrier to induce a robust and tailored innate immune response that increased peptide antigen immunogenicity. We found that incorporating both adjuvants into the nanovaccine synergistically enhanced expression of dendritic cell costimulatory markers, pro-inflammatory cytokine secretion, and peptide antigen cross-presentation. Additionally, the nanoparticle delivery increased lymph node accumulation and uptake of peptide antigen by dendritic cells in the draining lymph node. Consequently, nanoparticle codelivery of peptide antigen, cGAMP, and MPLA enhanced the antigen-specific CD8 T cell response and delayed tumor growth in several mouse models. Finally, the nanoparticle platform improved the efficacy of ICB immunotherapy in a murine colon carcinoma model. This work establishes a versatile nanoparticle vaccine platform for codelivery of peptide neoantigens and synergistic adjuvants to enhance responses to cancer vaccines.

摘要

免疫检查点阻断 (ICB) 彻底改变了癌症治疗方法,并导致完全和持久的反应,但只有少数患者受益。ICB 耐药性在很大程度上归因于肿瘤微环境中抗肿瘤 CD8 T 细胞的数量和/或功能不足。靶向新抗原的癌症疫苗可以激活和扩增抗肿瘤 T 细胞库,但历史上,临床反应较差,因为针对肽抗原的免疫通常较弱,导致 CD8 细胞毒性 T 细胞的激活不足。在此,我们描述了一种纳米颗粒疫苗平台,该平台可以通过多种方式克服这些障碍。首先,该疫苗可以使用可重复的规模化受限冲击射流混合方法来配制,将各种物理化学性质不同的肽抗原和多种疫苗佐剂共装入 pH 响应的、囊泡状纳米颗粒中,这些纳米颗粒粒径均一且小于 100nm。通过这种方法,我们将协同作用的佐剂 cGAMP 和单磷酰脂质 A (MPLA) 包封到纳米载体中,以诱导强烈的、定制化的固有免疫反应,从而提高肽抗原的免疫原性。我们发现,将两种佐剂都纳入纳米疫苗中具有协同作用,可增强树突状细胞共刺激标志物的表达、促炎细胞因子的分泌以及肽抗原的交叉呈递。此外,纳米颗粒的递呈增加了引流淋巴结中树突状细胞对肽抗原的淋巴结积聚和摄取。因此,纳米颗粒共递呈肽抗原、cGAMP 和 MPLA 增强了几种小鼠模型中的抗原特异性 CD8 T 细胞反应并延迟了肿瘤生长。最后,纳米颗粒平台提高了 ICB 免疫疗法在小鼠结肠癌细胞模型中的疗效。这项工作建立了一种多功能的纳米颗粒疫苗平台,用于共递呈肽新抗原和协同佐剂,以增强对癌症疫苗的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/1b0e989bb905/nn3c04471_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/15a9a5262676/nn3c04471_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/517f43e52b28/nn3c04471_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/270535ecdc50/nn3c04471_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/76dc1862dc2d/nn3c04471_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/5684a8472574/nn3c04471_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/a72ab2b2d9dd/nn3c04471_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/1b0e989bb905/nn3c04471_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/15a9a5262676/nn3c04471_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/517f43e52b28/nn3c04471_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/270535ecdc50/nn3c04471_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/76dc1862dc2d/nn3c04471_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/5684a8472574/nn3c04471_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/a72ab2b2d9dd/nn3c04471_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7887/10919087/1b0e989bb905/nn3c04471_0007.jpg

相似文献

[1]
A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.

ACS Nano. 2024-3-5

[2]
Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy.

Adv Sci (Weinh). 2022-8

[3]
Co-delivery of Peptide Neoantigens and Stimulator of Interferon Genes Agonists Enhances Response to Cancer Vaccines.

ACS Nano. 2020-8-25

[4]
Antigen self-presenting dendrosomes swallowing nanovaccines boost antigens and STING agonists codelivery for cancer immunotherapy.

Biomaterials. 2025-5

[5]
Monophosphoryl lipid A-assembled nanovaccines enhance tumor immunotherapy.

Acta Biomater. 2023-11

[6]
Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy.

Nano Lett. 2019-3-21

[7]
Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma.

J Control Release. 2016-2-24

[8]
A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA.

J Control Release. 2022-5

[9]
RNA Origami Functions as a Self-Adjuvanted Nanovaccine Platform for Cancer Immunotherapy.

ACS Nano. 2024-2-6

[10]
Self-assembly nanovaccine containing TLR7/8 agonist and STAT3 inhibitor enhances tumor immunotherapy by augmenting tumor-specific immune response.

J Immunother Cancer. 2021-8

引用本文的文献

[1]
Advances in nanotechnology-enabled adjuvants for peptide-based cancer vaccines.

Nano Res. 2025-7

[2]
Biomimetic nanovaccines in cancer therapy: mechanisms, efficacy, and clinical translation.

Mater Today Bio. 2025-7-18

[3]
T cells in cancer: mechanistic insights and therapeutic advances.

Biomark Res. 2025-7-15

[4]
A novel carrier-free nanoparticle with stable distinctive three-dimensional structure for tumor-targeted precision chemoimmunotherapy.

J Nanobiotechnology. 2025-7-1

[5]
Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery.

Mol Cancer. 2025-6-3

[6]
Enhancing H11 Protein-Induced Immune Protection Against in Goats: A Nano-Adjuvant Formulation Strategy.

Biology (Basel). 2025-5-17

[7]
Advances in cancer immunotherapy: historical perspectives, current developments, and future directions.

Mol Cancer. 2025-5-7

[8]
Designing multifunctional recombinant vaccines: an engineering strategy based on innovative epitope prediction-guided splicing.

Theranostics. 2025-3-3

[9]
Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation.

ACS Nano. 2025-5-6

[10]
Nanovaccines empowering CD8 T cells: a precision strategy to enhance cancer immunotherapy.

Theranostics. 2025-2-10

本文引用的文献

[1]
Cancer vaccines in the clinic.

Bioeng Transl Med. 2023-10-27

[2]
Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing.

Nanoscale. 2023-10-12

[3]
Discovery of New States of Immunomodulation for Vaccine Adjuvants via High Throughput Screening: Expanding Innate Responses to PRRs.

ACS Cent Sci. 2023-2-23

[4]
Delivering 3 billion doses of Comirnaty in 2021.

Nat Biotechnol. 2023-2

[5]
MuSyC dosing of adjuvanted cancer vaccines optimizes antitumor responses.

Front Immunol. 2022

[6]
Shaping Neonatal Immunization by Tuning the Delivery of Synergistic Adjuvants via Nanocarriers.

ACS Chem Biol. 2022-9-16

[7]
Cancer vaccines: the next immunotherapy frontier.

Nat Cancer. 2022-8

[8]
Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics.

Curr Opin Chem Biol. 2022-10

[9]
Peptide-Based Cancer Vaccine Delivery via the STINGΔTM-cGAMP Complex.

Adv Healthc Mater. 2022-8

[10]
Bioinspired vaccines to enhance MHC class-I antigen cross-presentation.

Curr Opin Immunol. 2022-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索