Suppr超能文献

一种利用HTTP对开源医疗系统进行控制流拒绝的轻量级僵尸网络。

A Lightweight Botnet Exploiting HTTP for Control Flow Denial on Open-Source Medical Systems.

作者信息

Lu Wei

机构信息

Department of Computer Science, Keene State College, The University System of New Hampshire, Keene, NH USA 03431.

出版信息

Int Conf Complex Intell Softw Intensive Syst. 2023;176:188-199. doi: 10.1007/978-3-031-35734-3_19. Epub 2023 Jun 19.

Abstract

The recent emergence of open-source medical cyber-physical systems has rapidly transformed the healthcare industry. This can be attributed to advancements in 3D printing technology and the growing popularity of open-source microcomputer systems like Arduino and Raspberry Pi. However, the increased use of these systems in hospitals has also raised cybersecurity concerns. In particular, new technologies, such as IoT devices and other mobile devices, have posed new challenges in exploiting modern botnets and determining their effectiveness with limited resources. In this paper, we propose a lightweight and full-encrypted cross-platform botnet system that provides a proof-of-concept demonstration of how a botnet attack can block control flow from the syringe pump in a testbed of an IoT medical network. The emphasis is placed on minimal deployment time and resource usage, making this lightweight botnet different from most traditional botnets, thus furthering cybersecurity research in intrusion detection for open-source medical systems.

摘要

开源医疗网络物理系统的近期出现迅速改变了医疗行业。这可归因于3D打印技术的进步以及诸如Arduino和Raspberry Pi等开源微型计算机系统日益普及。然而,这些系统在医院中使用的增加也引发了网络安全问题。特别是,物联网设备和其他移动设备等新技术在利用现代僵尸网络以及在资源有限的情况下确定其有效性方面带来了新的挑战。在本文中,我们提出了一种轻量级且全加密的跨平台僵尸网络系统,该系统提供了一个概念验证演示,展示了在物联网医疗网络的测试平台中僵尸网络攻击如何阻止来自注射泵的控制流。重点在于最短的部署时间和资源使用,使得这个轻量级僵尸网络不同于大多数传统僵尸网络,从而推动了开源医疗系统入侵检测方面的网络安全研究。

相似文献

1
A Lightweight Botnet Exploiting HTTP for Control Flow Denial on Open-Source Medical Systems.
Int Conf Complex Intell Softw Intensive Syst. 2023;176:188-199. doi: 10.1007/978-3-031-35734-3_19. Epub 2023 Jun 19.
2
Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture.
Sensors (Basel). 2020 Aug 5;20(16):4372. doi: 10.3390/s20164372.
3
Examination of Traditional Botnet Detection on IoT-Based Bots.
Sensors (Basel). 2024 Feb 5;24(3):1027. doi: 10.3390/s24031027.
4
Lightweight Internet of Things Botnet Detection Using One-Class Classification.
Sensors (Basel). 2022 May 10;22(10):3646. doi: 10.3390/s22103646.
5
Systematic Literature Review of IoT Botnet DDOS Attacks and Evaluation of Detection Techniques.
Sensors (Basel). 2024 Jun 1;24(11):3571. doi: 10.3390/s24113571.
6
Cross Deep Learning Method for Effectively Detecting the Propagation of IoT Botnet.
Sensors (Basel). 2022 May 20;22(10):3895. doi: 10.3390/s22103895.
8
Improving IoT Botnet Investigation Using an Adaptive Network Layer.
Sensors (Basel). 2019 Feb 11;19(3):727. doi: 10.3390/s19030727.
9
Classification of botnet attacks in IoT smart factory using honeypot combined with machine learning.
PeerJ Comput Sci. 2021 Jan 25;7:e350. doi: 10.7717/peerj-cs.350. eCollection 2021.

引用本文的文献

本文引用的文献

1
Principles of open source bioinstrumentation applied to the poseidon syringe pump system.
Sci Rep. 2019 Aug 27;9(1):12385. doi: 10.1038/s41598-019-48815-9.
2
Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.
PLoS One. 2017 Nov 15;12(11):e0187163. doi: 10.1371/journal.pone.0187163. eCollection 2017.
4
Open-source syringe pump library.
PLoS One. 2014 Sep 17;9(9):e107216. doi: 10.1371/journal.pone.0107216. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验