Suppr超能文献

机器学习识别出了肌萎缩侧索硬化症脊髓脂质代谢、内体运输和铁代谢中的新参与者。

Machine learning identified novel players in lipid metabolism, endosomal trafficking, and iron metabolism of the ALS spinal cord.

作者信息

Cheng Jack, Wu Bor-Tsang, Liu Hsin-Ping, Lin Wei-Yong

机构信息

Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.

Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.

出版信息

Sci Rep. 2025 Jan 10;15(1):1564. doi: 10.1038/s41598-024-81315-z.

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Although genes causing familial cases have been identified, those of sporadic ALS, which occupies the majority of patients, are still elusive. In this study, we adopted machine learning to build binary classifiers based on the New York Genome Center (NYGC) ALS Consortium's RNA-seq data of the postmortem spinal cord of ALS and non-neurological disease control. The accuracy of the classifiers was greater than 83% and 77% for the training set and the unseen test set, respectively. The classifiers contained 114 genes. Among them, 41 genes have been reported in previous ALS studies, and others are novel in this field. These genes are involved in mitochondrial respiration, lipid metabolism, endosomal trafficking, and iron metabolism, which may promote the progression of ALS pathology.

摘要

肌萎缩侧索硬化症(ALS)是一种影响运动神经元的致命性神经退行性疾病。尽管已确定了导致家族性病例的基因,但占大多数患者的散发性ALS的基因仍然难以捉摸。在本研究中,我们采用机器学习,基于纽约基因组中心(NYGC)ALS联盟的ALS患者和非神经疾病对照者死后脊髓的RNA测序数据构建二元分类器。对于训练集和未见过的测试集,分类器的准确率分别大于83%和77%。这些分类器包含114个基因。其中,41个基因在先前的ALS研究中已有报道,其他基因在该领域则是新发现的。这些基因参与线粒体呼吸、脂质代谢、内体运输和铁代谢,可能会促进ALS病理进程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7c1/11723943/2eb9584d3f3c/41598_2024_81315_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验