CA1神经元光遗传学兴奋性的定量分析。
Quantitative analysis of the optogenetic excitability of CA1 neurons.
作者信息
Schoeters Ruben, Tarnaud Thomas, Weyn Laila, Joseph Wout, Raedt Robrecht, Tanghe Emmeric
机构信息
WAVES, Department of Information Technology (INTEC), Ghent University/IMEC, Ghent, Belgium.
4BRAIN, Department of Neurology, Institute for Neuroscience, Ghent University, Ghent, Belgium.
出版信息
Front Comput Neurosci. 2023 Aug 15;17:1229715. doi: 10.3389/fncom.2023.1229715. eCollection 2023.
INTRODUCTION
Optogenetics has emerged as a promising technique for modulating neuronal activity and holds potential for the treatment of neurological disorders such as temporal lobe epilepsy (TLE). However, clinical translation still faces many challenges. This study aims to enhance the understanding of optogenetic excitability in CA1 cells and to identify strategies for improving stimulation protocols.
METHODS
Employing state-of-the-art computational models coupled with Monte Carlo simulated light propagation, the optogenetic excitability of four CA1 cells, two pyramidal and two interneurons, expressing ChR2(H134R) is investigated.
RESULTS AND DISCUSSION
The results demonstrate that confining the opsin to specific neuronal membrane compartments significantly improves excitability. An improvement is also achieved by focusing the light beam on the most excitable cell region. Moreover, the perpendicular orientation of the optical fiber relative to the somato-dendritic axis yields superior results. Inter-cell variability is observed, highlighting the importance of considering neuron degeneracy when designing optogenetic tools. Opsin confinement to the basal dendrites of the pyramidal cells renders the neuron the most excitable. A global sensitivity analysis identified opsin location and expression level as having the greatest impact on simulation outcomes. The error reduction of simulation outcome due to coupling of neuron modeling with light propagation is shown. The results promote spatial confinement and increased opsin expression levels as important improvement strategies. On the other hand, uncertainties in these parameters limit precise determination of the irradiance thresholds. This study provides valuable insights on optogenetic excitability of CA1 cells useful for the development of improved optogenetic stimulation protocols for, for instance, TLE treatment.
引言
光遗传学已成为一种用于调节神经元活动的有前景的技术,在治疗诸如颞叶癫痫(TLE)等神经系统疾病方面具有潜力。然而,临床转化仍面临许多挑战。本研究旨在加深对CA1细胞光遗传学兴奋性的理解,并确定改进刺激方案的策略。
方法
采用最先进的计算模型并结合蒙特卡洛模拟光传播,研究了四个表达ChR2(H134R)的CA1细胞(两个锥体神经元和两个中间神经元)的光遗传学兴奋性。
结果与讨论
结果表明,将视蛋白限制在特定的神经元膜区室可显著提高兴奋性。将光束聚焦在最易兴奋的细胞区域也能实现兴奋性的提高。此外,光纤相对于胞体 - 树突轴的垂直方向产生了更好的结果。观察到细胞间的变异性,突出了在设计光遗传学工具时考虑神经元退化的重要性。将视蛋白限制在锥体神经元的基底树突上使神经元最易兴奋。全局敏感性分析确定视蛋白位置和表达水平对模拟结果影响最大。展示了由于神经元建模与光传播耦合导致的模拟结果误差降低。结果表明空间限制和增加视蛋白表达水平是重要的改进策略。另一方面,这些参数的不确定性限制了辐照度阈值的精确确定。本研究为CA1细胞的光遗传学兴奋性提供了有价值的见解,有助于开发改进的光遗传学刺激方案,例如用于TLE治疗。