Suppr超能文献

AI 是否必不可少?深度学习在图像激活分拣中的必要性研究。

Is AI essential? Examining the need for deep learning in image-activated sorting of .

机构信息

Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.

Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan.

出版信息

Lab Chip. 2023 Sep 26;23(19):4232-4244. doi: 10.1039/d3lc00556a.

Abstract

Artificial intelligence (AI) has become a focal point across a multitude of societal sectors, with science not being an exception. Particularly in the life sciences, imaging flow cytometry has increasingly integrated AI for automated management and categorization of extensive cell image data. However, the necessity of AI over traditional classification methods when extending imaging flow cytometry to include cell sorting remains uncertain, primarily due to the time constraints between image acquisition and sorting actuation. AI-enabled image-activated cell sorting (IACS) methods remain substantially limited, even as recent advancements in IACS have found success while largely relying on traditional feature gating strategies. Here we assess the necessity of AI for image classification in IACS by contrasting the performance of feature gating, classical machine learning (ML), and deep learning (DL) with convolutional neural networks (CNNs) in the differentiation of mutant images. We show that classical ML could only yield a 2.8-fold enhancement in target enrichment capability, albeit at the cost of a 13.7-fold increase in processing time. Conversely, a CNN could offer an 11.0-fold improvement in enrichment capability at an 11.5-fold increase in processing time. We further executed IACS on mixed mutant populations and quantified target strain enrichment downstream DNA sequencing to substantiate the applicability of DL for the proposed study. Our findings validate the feasibility and value of employing DL in IACS for morphology-based genetic screening of , encouraging its incorporation in future advancements of similar technologies.

摘要

人工智能(AI)已成为众多社会领域的焦点,科学也不例外。特别是在生命科学领域,成像流式细胞术越来越多地将 AI 集成到自动管理和分类大量细胞图像数据中。然而,将成像流式细胞术扩展到包括细胞分选时,AI 是否优于传统分类方法仍不确定,主要是因为图像采集和分选执行之间的时间限制。尽管最近的 IACS 进展在很大程度上依赖于传统的特征门控策略,但 AI 支持的图像激活细胞分选(IACS)方法仍然受到很大限制。在这里,我们通过对比特征门控、经典机器学习(ML)和深度学习(DL)与卷积神经网络(CNN)在区分突变图像中的性能,来评估 AI 在 IACS 中进行图像分类的必要性。我们表明,经典 ML 只能在目标富集能力上提高 2.8 倍,尽管这是以处理时间增加 13.7 倍为代价的。相反,CNN 可以在处理时间增加 11.5 倍的情况下,提供 11.0 倍的富集能力提高。我们进一步在混合突变群体上执行 IACS,并通过下游 DNA 测序定量目标菌株富集,以证明 DL 在拟议研究中的适用性。我们的研究结果验证了在 IACS 中使用 DL 的可行性和价值,鼓励将其纳入未来类似技术的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验