Suppr超能文献

[图像分析中的人工智能——基础与新进展]

[Artificial intelligence in image analysis-fundamentals and new developments].

作者信息

Pouly Marc, Koller Thomas, Gottfrois Philippe, Lionetti Simone

机构信息

Informatik, Hochschule Luzern, Suurstoffi 1, 6343, Rotkreuz, Schweiz.

Department of Biomedical Engineering, University of Basel, Gewerbestraße 14, 4123, Allschwil, Schweiz.

出版信息

Hautarzt. 2020 Sep;71(9):660-668. doi: 10.1007/s00105-020-04663-7.

Abstract

BACKGROUND

Since 2017, there have been several reports of artificial intelligence (AI) achieving comparable performance to human experts on medical image analysis tasks. With the first ratification of a computer vision algorithm as a medical device in 2018, the way was paved for these methods to eventually become an integral part of modern clinical practice.

OBJECTIVES

The purpose of this article is to review the main developments that have occurred over the last few years in AI for image analysis, in relation to clinical applications and dermatology.

MATERIALS AND METHODS

Following the annual ImageNet challenge, we review classical methods of machine learning for image analysis and demonstrate how these methods incorporated human expertise but failed to meet industrial requirements regarding performance and scalability. With the rise of deep learning based on artificial neural networks, these limitations could be overcome. We discuss important aspects of this technology including transfer learning and report on recent developments such as explainable AI and generative models.

RESULTS

Deep learning models achieved performance on a par with human experts in a broad variety of diagnostic tasks and were shown to be suitable for industrialization. Therefore, current developments focus less on further improving accuracy but rather address open issues such as interpretability and applicability under clinical conditions. Upcoming generative models allow for entirely new applications.

CONCLUSIONS

Deep learning has a history of remarkable success and has become the new technical standard for image analysis. The dramatic improvement these models brought over classical approaches enables applications in a rapidly increasing number of clinical fields. In dermatology, as in many other domains, artificial intelligence still faces considerable challenges but is undoubtedly developing into an essential tool of modern medicine.

摘要

背景

自2017年以来,已有多篇报道称人工智能(AI)在医学图像分析任务中表现与人类专家相当。随着2018年首个计算机视觉算法被批准为医疗设备,这些方法最终成为现代临床实践不可或缺的一部分铺平了道路。

目的

本文旨在回顾过去几年人工智能在图像分析方面的主要进展,及其在临床应用和皮肤病学方面的情况。

材料与方法

继年度ImageNet挑战赛之后,我们回顾了用于图像分析的经典机器学习方法,并展示了这些方法如何融入人类专业知识,但未能满足工业界对性能和可扩展性的要求。随着基于人工神经网络的深度学习的兴起,这些局限性得以克服。我们讨论了这项技术的重要方面,包括迁移学习,并报告了诸如可解释人工智能和生成模型等最新进展。

结果

深度学习模型在广泛的诊断任务中表现与人类专家相当,并被证明适用于工业化。因此,当前的发展较少关注进一步提高准确性,而是关注诸如临床条件下的可解释性和适用性等未解决问题。即将出现的生成模型带来了全新的应用。

结论

深度学习有着显著的成功历史,已成为图像分析的新技术标准。这些模型相对于经典方法的显著改进使得其在越来越多的临床领域得到应用。在皮肤病学领域,与许多其他领域一样,人工智能仍然面临相当大的挑战,但无疑正在发展成为现代医学的重要工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验