文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

iDIA-QC:基于人工智能的非数据依赖采集质谱的质量控制

iDIA-QC: AI-empowered data-independent acquisition mass spectrometry-based quality control.

作者信息

Gao Huanhuan, Zhu Yi, Wang Dongxue, Nie Zongxiang, Wang He, Wang Guibin, Liang Shuang, Xie Yuting, Sun Yingying, Jiang Wenhao, Dong Zhen, Qian Liqin, Wang Xufei, Liang Mengdi, Chen Min, Fang Houqi, Zeng Qiufang, Tian Jiao, Sun Zeyu, Xue Juan, Li Shan, Chen Chen, Liu Xiang, Lyu Xiaolei, Guo Zhenchang, Qi Yingzi, Wu Ruoyu, Du Xiaoxian, Tong Tingde, Kong Fengchun, Han Liming, Wang Minghui, Zhao Yang, Dai Xinhua, He Fuchu, Guo Tiannan

机构信息

Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.

Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang province, China.

出版信息

Nat Commun. 2025 Jan 21;16(1):892. doi: 10.1038/s41467-024-54871-1.


DOI:10.1038/s41467-024-54871-1
PMID:39837863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11751188/
Abstract

Quality control (QC) in mass spectrometry (MS)-based proteomics is mainly based on data-dependent acquisition (DDA) analysis of standard samples. Here, we collect 2754 files acquired by data independent acquisition (DIA) and paired 2638 DDA files from mouse liver digests using 21 mass spectrometers across nine laboratories over 31 months. Our data demonstrate that DIA-based LC-MS/MS-related consensus QC metrics exhibit higher sensitivity compared to DDA-based QC metrics in detecting changes in LC-MS status. We then prioritize 15 metrics and invite 21 experts to manually assess the quality of 2754 DIA files based on those metrics. We develop an AI model for DIA-based QC using 2110 training files. It achieves AUCs of 0.91 (LC) and 0.97 (MS) in the first validation dataset (n = 528), and 0.78 (LC) and 0.94 (MS) in an independent validation dataset (n = 116). Finally, we develop an offline software called iDIA-QC for convenient adoption of this methodology.

摘要

基于质谱(MS)的蛋白质组学中的质量控制(QC)主要基于对标准样品的数据依赖型采集(DDA)分析。在此,我们收集了通过数据独立型采集(DIA)获得的2754个文件,并在31个月内使用九个实验室的21台质谱仪,将来自小鼠肝脏消化物的2638个DDA文件进行配对。我们的数据表明,在检测液相色谱-质谱(LC-MS)状态变化方面,基于DIA的液相色谱-串联质谱(LC-MS/MS)相关一致性质量控制指标比基于DDA的质量控制指标具有更高的灵敏度。然后,我们对15个指标进行优先排序,并邀请21位专家根据这些指标手动评估2754个DIA文件的质量。我们使用2110个训练文件开发了一种基于DIA的质量控制人工智能模型。在第一个验证数据集(n = 528)中,它在液相色谱(LC)和质谱(MS)方面的曲线下面积(AUC)分别达到0.91和0.97,在独立验证数据集(n = 116)中,液相色谱和质谱方面的曲线下面积分别为0.78和0.94。最后,我们开发了一款名为iDIA-QC的离线软件,以便于采用这种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/971d9707e935/41467_2024_54871_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/a14eb7babcef/41467_2024_54871_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/9001c347c0d8/41467_2024_54871_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/e7cc9b2e96a7/41467_2024_54871_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/2ea3a00822bd/41467_2024_54871_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/478063a24d21/41467_2024_54871_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/971d9707e935/41467_2024_54871_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/a14eb7babcef/41467_2024_54871_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/9001c347c0d8/41467_2024_54871_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/e7cc9b2e96a7/41467_2024_54871_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/2ea3a00822bd/41467_2024_54871_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/478063a24d21/41467_2024_54871_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a47f/11751188/971d9707e935/41467_2024_54871_Fig6_HTML.jpg

相似文献

[1]
iDIA-QC: AI-empowered data-independent acquisition mass spectrometry-based quality control.

Nat Commun. 2025-1-21

[2]
Standard operating procedure combined with comprehensive quality control system for multiple LC-MS platforms urinary proteomics.

Nat Commun. 2025-1-26

[3]
Statistical Assessment of QC Metrics on Raw LC-MS/MS Data.

Methods Mol Biol. 2017

[4]
Proteomics Quality Control: Quality Control Software for MaxQuant Results.

J Proteome Res. 2016-3-4

[5]
Prioritize biologically relevant ions for data-independent acquisition (BRI-DIA) in LC-MS/MS-based lipidomics analysis.

Metabolomics. 2022-7-16

[6]
Using Data-Dependent and -Independent Hybrid Acquisitions for Fast Liquid Chromatography-Based Untargeted Lipidomics.

Anal Chem. 2024-1-23

[7]
LogViewer: a software tool to visualize quality control parameters to optimize proteomics experiments using Orbitrap and LTQ-FT mass spectrometers.

J Biomol Tech. 2011-12

[8]
Establishing Quality Control Procedures for Large-Scale Plasma Proteomics Analyses.

J Am Soc Mass Spectrom. 2023-6-7

[9]
Rapid QC-MS: Interactive Dashboard for Synchronous Mass Spectrometry Data Acquisition Quality Control.

Anal Chem. 2024-11-5

[10]
PeakQC: A Software Tool for Omics-Agnostic Automated Quality Control of Mass Spectrometry Data.

J Am Soc Mass Spectrom. 2024-11-6

本文引用的文献

[1]
Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome.

Nat Methods. 2023-10

[2]
Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome.

Cell Rep Med. 2023-9-19

[3]
Proteomic Dynamics of Breast Cancer Cell Lines Identifies Potential Therapeutic Protein Targets.

Mol Cell Proteomics. 2023-8

[4]
Artificial intelligence defines protein-based classification of thyroid nodules.

Cell Discov. 2022-9-6

[5]
High-throughput proteomic sample preparation using pressure cycling technology.

Nat Protoc. 2022-10

[6]
Increasing the throughput of sensitive proteomics by plexDIA.

Nat Biotechnol. 2023-1

[7]
dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts.

Nat Commun. 2022-7-8

[8]
Noninvasive proteomic biomarkers for alcohol-related liver disease.

Nat Med. 2022-6

[9]
Longitudinal Large-Scale Semiquantitative Proteomic Data Stability Across Multiple Instrument Platforms.

J Proteome Res. 2021-11-5

[10]
SnapShot: Clinical proteomics.

Cell. 2021-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索