Tang Jun, Yue Liang, Xu Ying, Xu Fengzhe, Cai Xue, Fu Yuanqing, Miao Zelei, Gou Wanglong, Hu Wei, Xue Zhangzhi, Deng Kui, Shen Luqi, Jiang Zengliang, Shuai Menglei, Liang Xinxiu, Xiao Congmei, Xie Yuting, Guo Tiannan, Chen Yu-Ming, Zheng Ju-Sheng
Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
Nat Metab. 2025 Jan;7(1):166-181. doi: 10.1038/s42255-024-01185-7. Epub 2025 Jan 13.
The blood proteome contains biomarkers of ageing and age-associated diseases, but such markers are rarely validated longitudinally. Here we map the longitudinal proteome in 7,565 serum samples from a cohort of 3,796 middle-aged and elderly adults across three time points over a 9-year follow-up period. We pinpoint 86 ageing-related proteins that exhibit signatures associated with 32 clinical traits and the incidence of 14 major ageing-related chronic diseases. Leveraging a machine-learning model, we pick 22 of these proteins to generate a proteomic healthy ageing score (PHAS), capable of predicting the incidence of cardiometabolic diseases. We further identify the gut microbiota as a modifiable factor influencing the PHAS. Our data constitute a valuable resource and offer useful insights into the roles of serum proteins in ageing and age-associated cardiometabolic diseases, providing potential targets for intervention with therapeutics to promote healthy ageing.
血液蛋白质组包含衰老及与年龄相关疾病的生物标志物,但此类标志物很少经过纵向验证。在此,我们对来自3796名中老年成年人队列的7565份血清样本在9年随访期内的三个时间点的纵向蛋白质组进行了图谱绘制。我们确定了86种与衰老相关的蛋白质,这些蛋白质表现出与32种临床特征以及14种主要衰老相关慢性疾病发病率相关的特征。利用机器学习模型,我们从这些蛋白质中挑选出22种,生成了一个蛋白质组健康衰老评分(PHAS),能够预测心血管代谢疾病的发病率。我们进一步确定肠道微生物群是影响PHAS的一个可调节因素。我们的数据构成了宝贵的资源,并为血清蛋白在衰老及与年龄相关的心血管代谢疾病中的作用提供了有益见解,为促进健康衰老的治疗干预提供了潜在靶点。