Suppr超能文献

使用专家增强机器学习预测慢加急性肝衰竭患者肝移植术后结局。

Predicting post-liver transplant outcomes in patients with acute-on-chronic liver failure using Expert-Augmented Machine Learning.

机构信息

Division of Gastroenterology and Hepatology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA.

Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, California, USA.

出版信息

Am J Transplant. 2023 Dec;23(12):1908-1921. doi: 10.1016/j.ajt.2023.08.022. Epub 2023 Aug 30.

Abstract

Liver transplantation (LT) is a treatment for acute-on-chronic liver failure (ACLF), but high post-LT mortality has been reported. Existing post-LT models in ACLF have been limited. We developed an Expert-Augmented Machine Learning (EAML) model to predict post-LT outcomes. We identified ACLF patients who underwent LT in the University of California Health Data Warehouse. We applied the RuleFit machine learning (ML) algorithm to extract rules from decision trees and create intermediate models. We asked human experts to rate the rules generated by RuleFit and incorporated these ratings to generate final EAML models. We identified 1384 ACLF patients. For death at 1 year, areas under the receiver-operating characteristic curve were 0.707 (confidence interval [CI] 0.625-0.793) for EAML and 0.719 (CI 0.640-0.800) for RuleFit. For death at 90 days, areas under the receiver-operating characteristic curve were 0.678 (CI 0.581-0.776) for EAML and 0.707 (CI 0.615-0.800) for RuleFit. In pairwise comparisons, both EAML and RuleFit models outperformed cross-sectional models. Significant discrepancies between experts and ML occurred in rankings of biomarkers used in clinical practice. EAML may serve as a method for ML-guided hypothesis generation in further ACLF research.

摘要

肝移植(LT)是治疗慢加急性肝衰竭(ACLF)的一种方法,但据报道 LT 后死亡率较高。现有的 ACLF 术后模型存在局限性。我们开发了一种专家增强机器学习(EAML)模型来预测 LT 后的结果。我们从加利福尼亚大学健康数据仓库中确定了接受 LT 的 ACLF 患者。我们应用 RuleFit 机器学习(ML)算法从决策树中提取规则并创建中间模型。我们请人类专家对 RuleFit 生成的规则进行评分,并将这些评分纳入最终的 EAML 模型中。我们确定了 1384 名 ACLF 患者。对于 1 年死亡率,EAML 的受试者工作特征曲线下面积为 0.707(置信区间 0.625-0.793),RuleFit 的面积为 0.719(置信区间 0.640-0.800)。对于 90 天死亡率,EAML 的受试者工作特征曲线下面积为 0.678(置信区间 0.581-0.776),RuleFit 的面积为 0.707(置信区间 0.615-0.800)。在两两比较中,EAML 和 RuleFit 模型均优于横截面模型。在用于临床实践的生物标志物的排名方面,专家和 ML 之间存在显著差异。EAML 可以作为在进一步的 ACLF 研究中使用 ML 指导假设生成的一种方法。

相似文献

9
Acute-on-chronic liver failure: clinical course and liver transplantation.急性慢性肝衰竭:临床病程与肝移植
Expert Rev Gastroenterol Hepatol. 2023 Mar;17(3):251-262. doi: 10.1080/17474124.2023.2180630. Epub 2023 Feb 19.

引用本文的文献

本文引用的文献

4
OPTN/SRTR 2020 Annual Data Report: Liver.OPTN/SRTR 2020 年度数据报告:肝脏。
Am J Transplant. 2022 Mar;22 Suppl 2:204-309. doi: 10.1111/ajt.16978.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验