Department of Oral Surgery, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland.
Department Research, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland.
Clin Oral Investig. 2023 Oct;27(10):6187-6197. doi: 10.1007/s00784-023-05235-4. Epub 2023 Aug 31.
Nano-modified surfaces for dental implants may improve gingival fibroblast adhesion and antibacterial characteristics through cell-surface interactions. The present study investigated how a nanocavity titanium surface impacts the viability and adhesion of human gingival fibroblasts (HGF-1) and compared its response to Porphyromonas gingivalis with those of marketed implant surfaces.
Commercial titanium and zirconia disks, namely, sandblasted and acid-etched titanium (SLA), sandblasted and acid-etched zirconia (ZLA), polished titanium (PT) and polished zirconia (ZrP), and nanostructured disks (NTDs) were tested. Polished titanium disks were etched with a 1:1 combination of 98% HSO and 30% HO (piranha etching) for 5 h at room temperature to produce the NTDs. Atomic force microscopy was used to measure the surface topography, roughness, adhesion force, and work of adhesion. MTT assays and immunofluorescence staining were used to examine cell viability and adhesion after incubation of HGF-1 cells on the disk surfaces. After incubation with P. gingivalis, conventional culture, live/dead staining, and SEM were used to determine the antibacterial properties of NTD, SLA, ZLA, PT, and ZrP.
Etching created nanocavities with 10-20-nm edge-to-edge diameters. Chemical etching increased the average surface roughness and decreased the surface adherence, while polishing and flattening of ZrP increased adhesion. However, only the NTDs inhibited biofilm formation and bacterial adherence. The NTDs showed antibacterial effects and P. gingivalis vitality reductions. The HGF-1 cells demonstrated greater viability on the NTDs compared to the controls.
Nanocavities with 10-20-nm edge-to-edge diameters on titanium disks hindered P. gingivalis adhesion and supported the adhesion of gingival fibroblasts when compared to the surfaces of currently marketed titanium or zirconia dental implants.
This study prepared an effective antibacterial nanoporous surface, assessed its effects against oral pathogens, and demonstrated that surface characteristics on a nanoscale level influenced oral pathogens and gingival fibroblasts.
not applicable.
通过细胞表面相互作用,纳米改性的牙种植体表面可能改善牙龈成纤维细胞的黏附性和抗菌特性。本研究通过研究纳米腔钛表面对人牙龈成纤维细胞(HGF-1)活力和黏附性的影响,并将其与市售种植体表面的反应进行比较,来评估纳米腔钛表面对人牙龈成纤维细胞(HGF-1)活力和黏附性的影响。
本研究测试了商业钛和氧化锆圆盘,即喷砂酸蚀钛(SLA)、喷砂酸蚀氧化锆(ZLA)、抛光钛(PT)和抛光氧化锆(ZrP)以及纳米结构圆盘(NTD)。用 1:1 的混合 98% HSO 和 30% HO(过硫酸氢钾)在室温下蚀刻抛光钛盘 5 小时,制备纳米结构圆盘。原子力显微镜用于测量表面形貌、粗糙度、附着力和附着功。用 MTT 法和免疫荧光染色法检测 HGF-1 细胞在盘表面孵育后的细胞活力和黏附性。用常规培养、死活染色和 SEM 检测与牙龈卟啉单胞菌孵育后 NTD、SLA、ZLA、PT 和 ZrP 的抗菌性能。
蚀刻产生了具有 10-20nm 边缘到边缘直径的纳米腔。化学蚀刻增加了平均表面粗糙度并降低了表面附着力,而 ZrP 的抛光和平整化则增加了附着力。然而,只有 NTD 抑制了生物膜形成和细菌附着。NTD 表现出抗菌作用和牙龈卟啉单胞菌活力降低。与对照组相比,HGF-1 细胞在 NTD 上表现出更高的活力。
与目前市售钛或氧化锆牙科种植体表面相比,钛盘上具有 10-20nm 边缘到边缘直径的纳米腔阻碍了牙龈卟啉单胞菌的附着,并支持了牙龈成纤维细胞的附着。
本研究制备了一种有效的抗菌纳米多孔表面,评估了其对口腔病原体的作用,并表明表面纳米级特性影响口腔病原体和牙龈成纤维细胞。
无。