Suppr超能文献

利用机器学习预测急性冠状动脉综合征的不良事件:一项回顾性研究。

Using machine learning to predict adverse events in acute coronary syndrome: A retrospective study.

机构信息

Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.

出版信息

Clin Cardiol. 2023 Dec;46(12):1594-1602. doi: 10.1002/clc.24127. Epub 2023 Aug 31.

Abstract

BACKGROUND

Up to 30% of patients with acute coronary syndrome (ACS) die from adverse events, mainly renal failure and myocardial infarction (MI). Accurate prediction of adverse events is therefore essential to improve patient prognosis.

HYPOTHESIS

Machine learning (ML) methods can accurately identify risk factors and predict adverse events.

METHODS

A total of 5240 patients diagnosed with ACS who underwent PCI were enrolled and followed for 1 year. Support vector machine, extreme gradient boosting, adaptive boosting, K-nearest neighbors, random forest, decision tree, categorical boosting, and linear discriminant analysis (LDA) were developed with 10-fold cross-validation to predict acute kidney injury (AKI), MI during hospitalization, and all-cause mortality within 1 year. Features with mean Shapley Additive exPlanations score >0.1 were screened by XGBoost method as input for model construction. Accuracy, F1 score, area under curve (AUC), and precision/recall curve were used to evaluate the performance of the models.

RESULTS

Overall, 2.6% of patients died within 1 year, 4.2% had AKI, and 4.7% had MI during hospitalization. The LDA model was superior to the other seven ML models, with an AUC of 0.83, F1 score of 0.90, accuracy of 0.85, recall of 0.85, specificity of 0.68, and precision of 0.99 in predicting all-cause mortality. For AKI and MI, the LDA model also showed good discriminating capacity with an AUC of 0.74.

CONCLUSION

The LDA model, using easily accessible variables from in-hospital patients, showed the potential to effectively predict the risk of adverse events and mortality within 1 year in ACS patients after PCI.

摘要

背景

多达 30%的急性冠状动脉综合征(ACS)患者死于不良事件,主要是肾衰竭和心肌梗死(MI)。因此,准确预测不良事件对于改善患者预后至关重要。

假设

机器学习(ML)方法可以准确识别危险因素并预测不良事件。

方法

共纳入 5240 例接受 PCI 的 ACS 患者,随访 1 年。采用 10 折交叉验证,开发支持向量机、极端梯度增强、自适应增强、K-最近邻、随机森林、决策树、分类增强和线性判别分析(LDA),以预测急性肾损伤(AKI)、住院期间 MI 和 1 年内全因死亡率。通过 XGBoost 方法筛选平均 Shapley Additive exPlanations 得分>0.1 的特征作为模型构建的输入。使用准确性、F1 得分、曲线下面积(AUC)和精度/召回曲线来评估模型的性能。

结果

总体而言,1 年内有 2.6%的患者死亡,4.2%发生 AKI,4.7%发生住院期间 MI。LDA 模型优于其他七个 ML 模型,AUC 为 0.83,F1 分数为 0.90,准确性为 0.85,召回率为 0.85,特异性为 0.68,精密度为 0.99,预测全因死亡率。对于 AKI 和 MI,LDA 模型也表现出良好的区分能力,AUC 为 0.74。

结论

使用住院患者易获得的变量的 LDA 模型显示出在 PCI 后 ACS 患者 1 年内有效预测不良事件和死亡率风险的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21f4/10716319/e6e32490c5db/CLC-46-1594-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验