Suppr超能文献

比较单医院模型和全国模型以预测30天住院死亡率。

Comparing Single-Hospital and National Models to Predict 30-Day Inpatient Mortality.

作者信息

Cogill Steven, Heberer Kent, Kaushal Amit, Fang Daniel, Lee Jennifer

机构信息

VA Palo Alto Cooperative Studies Program Coordinating Center, Palo Alto, CA, USA.

Big Data-Scientist Training Enhancement Program at VA Palo Alto Health Care System, Palo Alto, CA, USA.

出版信息

J Gen Intern Med. 2025 Mar;40(4):803-810. doi: 10.1007/s11606-024-09315-3. Epub 2025 Jan 6.

Abstract

BACKGROUND

Advances in artificial intelligence and machine learning have facilitated the creation of mortality prediction models which are increasingly used to assess quality of care and inform clinical practice. One open question is whether a hospital should utilize a mortality model trained from a diverse nationwide dataset or use a model developed primarily from their local hospital data.

OBJECTIVE

To compare performance of a single-hospital, 30-day all-cause mortality model against an established national benchmark on the task of mortality prediction.

DESIGN/PARTICIPANTS: We developed a single-hospital mortality prediction model using 9975 consecutive inpatient admissions at the Department of Veterans Affairs Palo Alto Healthcare System from July 26, 2018, to September 30, 2021, and compared performance against an established national model with similar features.

MAIN MEASURES

Both the single-hospital model and the national model placed each patient in one of five prediction bins: < 2.5%, 2.5-5%, 5-10%, 10-30%, and ≥ 30% risks of 30-day mortality. Evaluation metrics included receiver operator characteristic area under the curve (ROC AUC), sensitivity, specificity, and balanced accuracy. Final comparisons were made between the single-hospital model trained on the full training set and the national model for both metrics and prediction overlap.

KEY RESULTS

With sufficiently large training sets of 2720 or greater inpatient admissions, there was no statistically significant difference between the performances of the national model (ROC AUC 0.89, 95%CI [0.858, 0.919]) and single-hospital model (ROC AUC 0.878, 95%CI [0.84, 0.912]). For the 89 mortality events in the test set, the single-hospital model agreed with the national model risk assessment or an adjacent risk assessment in 92.1% of the encounters.

CONCLUSIONS

A single-hospital inpatient mortality prediction model can achieve performance comparable to a national model when evaluated on a single-hospital population, given sufficient sample size.

摘要

背景

人工智能和机器学习的进展推动了死亡率预测模型的创建,这些模型越来越多地用于评估医疗质量并为临床实践提供参考。一个悬而未决的问题是,医院应该使用基于全国范围内多样化数据集训练的死亡率模型,还是使用主要基于其本地医院数据开发的模型。

目的

在死亡率预测任务中,比较单家医院的30天全因死亡率模型与既定国家基准模型的性能。

设计/参与者:我们使用2018年7月26日至2021年9月30日期间退伍军人事务部帕洛阿尔托医疗系统连续收治的9975例住院患者,开发了一个单家医院死亡率预测模型,并将其性能与具有相似特征的既定国家模型进行比较。

主要指标

单家医院模型和国家模型都将每位患者置于五个预测区间之一:30天死亡率风险<2.5%、2.5 - 5%、5 - 10%、10 - 30%和≥30%。评估指标包括受试者工作特征曲线下面积(ROC AUC)、敏感性、特异性和平衡准确性。最终对在完整训练集上训练的单家医院模型与国家模型在指标和预测重叠方面进行了比较。

关键结果

对于2720例或更多住院患者的足够大训练集,国家模型(ROC AUC 0.89,95%CI [0.858, 0.919])和单家医院模型(ROC AUC 0.878,95%CI [0.84, 0.912])的性能之间没有统计学上的显著差异。对于测试集中的89例死亡事件,单家医院模型在92.1%的病例中与国家模型风险评估或相邻风险评估一致。

结论

在单家医院人群中进行评估时,给定足够的样本量,单家医院住院患者死亡率预测模型可以实现与国家模型相当的性能。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验